Adding a Twist to Lateral Flow Immunoassays: A Direct Replacement of Antibodies with Helical Affibodies, from Selection to Application

化学 扭转 选择(遗传算法) 几何学 数学 人工智能 计算机科学
作者
Chris Sadler,Adam Creamer,Kim Anh Giang,Kevion K. Darmawan,André Shamsabadi,Daniel A. Richards,Johan Nilvebrant,Jonathan P. Wojciechowski,Patrick Charchar,Ross Burdis,Francesca Smith,Irene Yarovsky,Per‐Åke Nygren,Molly M. Stevens
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c17452
摘要

Immunoreagents, most commonly antibodies, are integral components of lateral flow immunoassays. However, the use of antibodies comes with limitations, particularly relating to their reproducible production, and poor thermal and chemical stability. Here, we employ phage display to develop affibodies, a class of nonimmunoglobulin affinity proteins based on a small three-helix bundle scaffold, against SARS-CoV-2 Spike protein. Subsequently, we demonstrate the utility and viability of affibodies to directly replace antibodies in lateral flow immunoassays. In addition, we highlight several physiochemical advantages of affibodies, including their ability to withstand exposure to high temperature and humidity while maintaining superior performance compared to their antibody counterparts. Furthermore, we investigate the adsorption mechanism of affibodies to the surface of gold nanoparticle probes via a His6-tag, introduced to also facilitate recombinant purification. Through molecular dynamics simulations, we elucidate the structural and physical characteristics of affibody dimers which result in high-performing detection probes when immobilized on nanoparticle surfaces. This work demonstrates that affibodies can be used as direct replacements to antibodies in immunoassays and should be further considered as alternatives owing to their improved physiochemical properties and modular design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
what发布了新的文献求助10
2秒前
leolee完成签到,获得积分10
4秒前
4秒前
8秒前
rye227应助DD47采纳,获得20
9秒前
SCI发布了新的文献求助10
10秒前
莎莉完成签到,获得积分10
12秒前
Felix完成签到,获得积分10
13秒前
情怀应助曾淋采纳,获得10
14秒前
jeonghan完成签到 ,获得积分10
14秒前
LOVER完成签到 ,获得积分10
15秒前
共享精神应助落后醉易采纳,获得10
16秒前
17秒前
大模型应助清风明月采纳,获得10
18秒前
20秒前
111发布了新的文献求助10
20秒前
kelaibing完成签到,获得积分10
20秒前
pluto应助温暖砖头采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得30
23秒前
科目三应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得30
23秒前
我是老大应助科研通管家采纳,获得10
24秒前
zmnzmnzmn应助科研通管家采纳,获得10
24秒前
lynn应助科研通管家采纳,获得40
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
yumeng完成签到,获得积分10
24秒前
尧九应助科研通管家采纳,获得10
24秒前
ding应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
ddd777发布了新的文献求助10
26秒前
脑洞疼应助是小明啦采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339