Estimating Bus Mass Using a Hybrid Approach: Integrating Forgetting Factor Recursive Least Squares with the Extended Kalman Filter

稳健性(进化) 扩展卡尔曼滤波器 控制理论(社会学) 计算机科学 递归最小平方滤波器 卡尔曼滤波器 工程类 算法 控制(管理) 自适应滤波器 人工智能 生物化学 化学 基因
作者
Jingyang Du,Qian Wang,Xiaolei Yuan
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (6): 1741-1741
标识
DOI:10.3390/s25061741
摘要

The vehicle mass is a crucial state variable for achieving safe and energy-efficient driving, as it directly impacts the vehicle’s power performance, braking efficiency, and handling stability. However, current methods frequently rely on particular operating conditions or supplementary sensors, which limits their ability to provide accurate, stable, and convenient vehicle mass estimation. Moreover, as a form of public transportation, buses are subject to stringent safety standards. The frequent variations in passenger numbers result in substantial fluctuations in vehicle mass, thereby complicating the accuracy of mass estimation. To address these challenges, this paper proposes a hybrid vehicle mass estimation algorithm that integrates Robust Forgetting Factor Recursive Least Squares (Robust FFRLS) and Extended Kalman Filter (EKF). By sequentially employing these two methods, the algorithm conducts dual-stage mass estimation and incorporates a proportional coordination factor to balance the outputs from FFRLS and EKF, thereby improving the accuracy of the estimated mass. Importantly, the proposed method does not necessitate the installation of new sensors, relying instead on data from existing CAN-bus and IMU sensors, thus addressing cost control concerns for mass-produced vehicles. The algorithm was validated through MATLAB(2022b)-TruckSim(2019.0) simulations under three loading conditions: empty, half-load, and full-load. The results demonstrate that the proposed algorithm maintains an error rate below 10% across all conditions, outperforming single-method approaches and meeting the stringent requirements for vehicle mass estimation in safety and stability functions. Future work will focus on conducting real-world tests under various driving conditions to further validate the robustness and applicability of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助STEAD采纳,获得10
2秒前
乐乐乐乐乐乐应助言小采纳,获得50
3秒前
4秒前
迅速千愁完成签到 ,获得积分10
4秒前
6秒前
6秒前
平凡之路发布了新的文献求助10
6秒前
胡梅13发布了新的文献求助10
7秒前
9秒前
手拿把掐发布了新的文献求助30
9秒前
星辰大海应助balelalala采纳,获得10
12秒前
14秒前
科目三应助zeng采纳,获得10
15秒前
16秒前
HEAUBOOK应助科研通管家采纳,获得10
19秒前
HEAUBOOK应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
20秒前
20秒前
rtlnk应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
手拿把掐完成签到,获得积分10
20秒前
20秒前
Hello应助科研通管家采纳,获得10
20秒前
小易完成签到,获得积分10
21秒前
科目三应助英俊白莲采纳,获得10
22秒前
胡梅13完成签到,获得积分10
25秒前
25秒前
喜宝完成签到 ,获得积分10
26秒前
27秒前
滴滴完成签到 ,获得积分10
28秒前
dyyisash完成签到 ,获得积分10
29秒前
zeng发布了新的文献求助10
29秒前
yiqihunhun发布了新的文献求助10
30秒前
佳妮发布了新的文献求助10
31秒前
孟冬发布了新的文献求助10
32秒前
zjp完成签到,获得积分10
34秒前
34秒前
上官若男应助失眠的凡阳采纳,获得10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808948
求助须知:如何正确求助?哪些是违规求助? 3353666
关于积分的说明 10366348
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320