Deep Learning-based User Behavior Data Mining in Precise Recommendation of E-commerce Platforms

计算机科学 深度学习 人工智能 数据挖掘 万维网 人机交互
作者
Lanyan Yang
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:10 (1)
标识
DOI:10.2478/amns-2025-0327
摘要

Abstract The continuous expansion of the e-commerce market scale and the rapid growth of the number of commodities have made how to accurately recommend commodities that meet the needs of users become the most concerned issue for e-commerce platform merchants. In this paper, through the combination of deep learning model and user’s behavioral sequence data mining, PMCA-BiLSTM is constructed as an accurate recommendation model for e-commerce platform, which is mainly composed of BiLSTM network, attention mechanism and residual convolutional neural network. On the basis of the recommendation model, this paper designs an e-commerce platform accurate recommendation system, and evaluates the performance of the system and the corresponding recommendation model. The system test results show that the longest response time for a user request is 2796ms, which is within 3 seconds, and the error rate of all test requests is 0, indicating that all the simulated requests can be correctly processed by the system, and that the system is able to give users a good user experience. The PMCA-BiLSTM model in this paper outperforms other comparative models in both HR and NDCG evaluation metrics on both Yoochoose1/64 and Diginetica datasets with different number of iterations and different Top-K, which verifies the validity of this paper’s method. The recommender system and its recommendation model designed in this paper provide a feasible path for accurately recommending goods according to user needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuC完成签到,获得积分10
1秒前
万能图书馆应助科学家采纳,获得10
1秒前
刻苦听寒完成签到,获得积分10
1秒前
小周小周发布了新的文献求助20
1秒前
1秒前
2秒前
丶氵一生里完成签到,获得积分10
2秒前
ha发布了新的文献求助10
2秒前
moonlight完成签到,获得积分10
2秒前
无尽夏发布了新的文献求助10
2秒前
2秒前
3秒前
garfieldg3完成签到,获得积分10
3秒前
重要小兔子完成签到,获得积分20
3秒前
小嘉贞发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
6秒前
6秒前
SYLH应助花仙子采纳,获得10
6秒前
FOOL完成签到,获得积分10
7秒前
7秒前
7秒前
含蓄丸子完成签到,获得积分20
7秒前
7秒前
8秒前
chen完成签到,获得积分10
8秒前
chuzhong12发布了新的文献求助20
8秒前
刘卫东关注了科研通微信公众号
8秒前
清脆半双发布了新的文献求助20
9秒前
冷静绿旋发布了新的文献求助10
9秒前
9秒前
hjg发布了新的文献求助10
9秒前
10秒前
liuguohua126发布了新的文献求助10
10秒前
Yolanda完成签到,获得积分10
11秒前
花叶完成签到,获得积分10
11秒前
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868