A Hybrid BERT-CNN Approach for Depression Detection on Social Media Using Multimodal Data

计算机科学 预处理器 编码器 卷积神经网络 人工智能 分类 图像(数学) 社会化媒体 模式识别(心理学) 机器学习 自然语言处理 万维网 操作系统
作者
Rohit Beniwal,Pavi Saraswat
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (7): 2453-2472 被引量:3
标识
DOI:10.1093/comjnl/bxae018
摘要

Abstract Due to the absence of early facilities, a large population is dealing with stress, anxiety, and depression issues, which may have disastrous consequences, including suicide. Past studies revealed a direct relationship between the high engagement with social media and the increasing depression rate. This research initially creates a dataset with text, emoticons and image data, and then preprocessing is performed using diverse techniques. The proposed model in the research consists of three parts: first is textual bidirectional encoder representations from transformers (BERT), which is trained on only text data and also emoticons are converted into a textual form for easy processing; second is convolutional neural network (CNN), which is trained only on image data; and the third is the combination of best-performing models, i.e. hybrid of BERT and CNN (BERT-CNN), to work on both the text and images with enhanced accuracy. The results show the best accuracy with BERT, i.e. 97% for text data; for image data, CNN has attained the highest accuracy of 89%. Finally, the hybrid approach is compared with other combinations and previous studies; it achieved the best accuracy of 99% in the categorization of users into depressive and non-depressive based on multimodal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
淡然冬灵发布了新的文献求助30
1秒前
1秒前
VanessaDY发布了新的文献求助10
1秒前
小不点点发布了新的文献求助30
3秒前
cdercder应助傲娇的烨霖采纳,获得10
3秒前
柚子发布了新的文献求助10
3秒前
4秒前
宝宝慧儿7发布了新的文献求助10
5秒前
mao发布了新的文献求助10
5秒前
CipherSage应助柒月小鱼采纳,获得10
5秒前
BING发布了新的文献求助10
6秒前
guoxt发布了新的文献求助10
8秒前
咯噔完成签到,获得积分10
10秒前
orixero应助傲娇的烨霖采纳,获得10
10秒前
小不点点完成签到,获得积分10
10秒前
NexusExplorer应助伶俐的以筠采纳,获得10
11秒前
天天快乐应助神勇的白猫采纳,获得10
11秒前
yu完成签到,获得积分10
12秒前
ZZZ发布了新的文献求助10
12秒前
VanessaDY完成签到,获得积分20
12秒前
12秒前
汉堡包完成签到 ,获得积分10
13秒前
义气硬币完成签到,获得积分20
13秒前
笑点低建辉完成签到,获得积分10
13秒前
14秒前
RNAPW完成签到,获得积分10
15秒前
宝宝慧儿7完成签到,获得积分10
16秒前
李健应助遇见馅儿饼采纳,获得10
16秒前
16秒前
健壮未来发布了新的文献求助30
16秒前
科研通AI5应助敏感的寄凡采纳,获得10
17秒前
nv完成签到,获得积分10
17秒前
矫情的陈世美完成签到,获得积分20
18秒前
19秒前
22秒前
22秒前
22秒前
小马完成签到,获得积分10
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345103
关于积分的说明 10323728
捐赠科研通 3061700
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462