An urban cellular automata model based on a spatiotemporal non-stationary neighborhood

北京 细胞自动机 同种类的 城市扩张 计算机科学 地理 数据挖掘 中国 城市规划 人工智能 统计物理学 工程类 物理 土木工程 考古
作者
Haoran Zeng,Haijun Wang,Bin Zhang
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:38 (5): 902-930 被引量:5
标识
DOI:10.1080/13658816.2024.2321223
摘要

Spatiotemporal modeling has long been a major concern of geographic information science. Even though previous research has shown the importance of temporal and spatial information in quantifying the neighborhood effects of urban cellular automata (CA) models, constructing a spatiotemporal non-stationary neighborhood remains a challenge, due to the complexity of the spatiotemporal models. In this study, we introduced spatiotemporal modeling into the neighborhood of an urban CA model and constructed a geographically and temporally weighted neighborhood (GTWN). A corresponding approach to optimizing the bandwidth of the GTWN was also developed. Taking Beijing and Wuhan in China as examples, the GTWN-CA model was employed to simulate their urban expansion. The experimental results indicate that the GTWN-CA model has a better and performance than other CA models whose neighborhood is constructed based on the assumption of temporal or spatial stationarity, highlighting the advantages of spatiotemporal modeling in quantifying the neighborhood effect. Compared with the commonly used CA model with a homogeneous neighborhood (HON-CA), in terms of the figure of merit (FoM), the calibration accuracy of the GTWN-CA model was improved by 0.87% in Beijing and 5.4% in Wuhan, and the validation accuracy was improved by 7.9% in Beijing and 8.9% in Wuhan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joanna完成签到,获得积分10
1秒前
南瓜豆腐完成签到 ,获得积分10
2秒前
东莱牧鲲完成签到,获得积分10
2秒前
McGrady发布了新的文献求助10
3秒前
wwj完成签到,获得积分10
3秒前
小马甲应助852采纳,获得10
3秒前
mrt发布了新的文献求助30
3秒前
4秒前
5秒前
Cosmicspirit完成签到,获得积分10
8秒前
kokjh发布了新的文献求助10
9秒前
123发布了新的文献求助20
9秒前
11秒前
12秒前
zoe发布了新的文献求助10
13秒前
14秒前
14秒前
痴情的尔丝关注了科研通微信公众号
14秒前
小白发布了新的文献求助10
15秒前
脑洞疼应助Estella采纳,获得10
15秒前
瞿寒发布了新的文献求助10
16秒前
xiaoy发布了新的文献求助10
16秒前
Supine.发布了新的文献求助10
17秒前
舒心书南发布了新的文献求助10
18秒前
18秒前
深情安青应助大气乐儿采纳,获得10
20秒前
21秒前
22秒前
Minn发布了新的文献求助10
22秒前
Orange应助Lambda采纳,获得10
23秒前
过冷风应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
兔兔兔应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
中和皇极应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
过冷风应助科研通管家采纳,获得10
24秒前
111发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545841
求助须知:如何正确求助?哪些是违规求助? 3977345
关于积分的说明 12316080
捐赠科研通 3645565
什么是DOI,文献DOI怎么找? 2007662
邀请新用户注册赠送积分活动 1043268
科研通“疑难数据库(出版商)”最低求助积分说明 932088