钯
双功能
催化作用
对映选择合成
金属化
化学
反应性(心理学)
组合化学
基质(水族馆)
选择性
立体化学
有机化学
医学
海洋学
替代医学
病理
地质学
作者
Kevin Wu,Nelson Y. S. Lam,Daniel A. Strassfeld,Zhoulong Fan,Jennifer X. Qiao,Tao Liu,Dean Stamos,Jin‐Quan Yu
标识
DOI:10.1002/anie.202400509
摘要
Abstract In 2001, our curiosity to understand the stereochemistry of C−H metalation with Pd prompted our first studies in Pd(II)‐catalyzed asymmetric C−H activation (RSC Research appointment: 020 7451 2545, Grant: RG 36873, Dec. 2002). We identified four central challenges: 1. poor reactivity of simple Pd salts with native substrates; 2. few strategies to control site selectivity for remote C−H bonds; 3. the lack of chiral catalysts to achieve enantioselectivity via asymmetric C−H metalation, and 4. low practicality due to limited coupling partner scope and the use of specialized oxidants. These challenges necessitated new strategies in catalyst and reaction development. For reactivity , we developed approaches to enhance substrate–catalyst affinity together with novel bifunctional ligands which participate in and accelerate the C−H cleavage step. For site‐selectivity , we introduced the concept of systematically modulating the distance and geometry between a directing template, catalyst, and substrate to selectively access remote C−H bonds. For enantioselectivity , we devised predictable stereomodels for catalyst‐controlled enantioselective C−H activation based on the participation of bifunctional ligands. Finally, for practicality , we have developed varied catalytic manifolds for Pd(II) to accommodate diverse coupling partners while employing practical oxidants such as simple peroxides. These advances have culminated in numerous C−H activation reactions, setting the stage for broad industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI