Vortex-Enhanced Microfluidic Chip for Efficient Mixing and Particle Capturing Combining Acoustics with Inertia

微流控 化学 涡流 均质化(气候) 机械 声学 涡度 激发 纳米技术 物理 生物 生态学 材料科学 量子力学 生物多样性
作者
Yuwen Lu,Wei Tan,Shuoshuo Mu,Guorui Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (9): 3859-3869 被引量:3
标识
DOI:10.1021/acs.analchem.3c05291
摘要

Vortex-based microfluidics has received significant attention for its unique characteristics of high efficiency, flexible control, and label-free properties for the past decades. Herein, we present a vortex-based acousto-inertial chip that allows both fluid and particle manipulation within a significantly wider flow range and lower excitation voltage. Composed of contraction–expansion array structures and vibrating microstructures combined with bubbles and sharp edges, such a configuration results in more vigorous vortical fluid motions. The overall improvement in device performance comes from the synergistic effect of acoustics and inertia, as well as the positive feedback loop formed by vibrating bubbles and sharp edges. We characterize flow patterns in the microchannels by fluorescence particle tracer experiments and uncover single- and double-vortex modes over a range of sample flow rates and excitation voltages. On this basis, the ability of rapid and efficient sample homogenization up to a flow rate of 200 μL/min under an excitation voltage of 15 Vpp is verified by a two-fluid fluorescence mixing experiment. Moreover, the recirculation motion of particles in microvortices is investigated by using a high-speed imaging system. We also quantitatively measure the particle velocity variation on the trajectory and illustrate the capturing mechanism, which results from the interaction of the microvortices, particle dynamics, and composite microstructure perturbations. Further utilizing the shear forces derived by microvortices, our acousto-inertial chip is demonstrated to lysis red blood cells (RBCs) in a continuous, reagent-free manner. The high controllability and multifunction of this technology allow for the development of multistep miniaturized "lab-on-chip" analytical systems, which could significantly broaden the application of microvortex technology in biological, chemical, and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王蕾发布了新的文献求助10
刚刚
安AN完成签到,获得积分10
1秒前
2秒前
xixihaha发布了新的文献求助10
2秒前
15327432191给15327432191的求助进行了留言
2秒前
梅赛德斯完成签到,获得积分10
3秒前
3秒前
不懈奋进应助98484采纳,获得30
4秒前
5秒前
fang20130608关注了科研通微信公众号
6秒前
6秒前
survivaluu完成签到,获得积分10
6秒前
全圆佑的猫猫完成签到,获得积分10
7秒前
小张完成签到 ,获得积分10
7秒前
英俊的铭应助htt采纳,获得30
8秒前
8秒前
周杰发布了新的文献求助10
8秒前
lijo完成签到,获得积分10
8秒前
8秒前
9秒前
共享精神应助arron采纳,获得30
9秒前
wanci应助醉熏的天薇采纳,获得10
9秒前
冷静白亦发布了新的文献求助10
9秒前
愉快的宛儿完成签到,获得积分10
9秒前
neiz完成签到,获得积分10
9秒前
9秒前
ccl发布了新的文献求助10
10秒前
DD完成签到,获得积分10
11秒前
12秒前
12秒前
惊天大幂幂完成签到,获得积分10
12秒前
13秒前
13秒前
iceeer发布了新的文献求助10
13秒前
13秒前
1121241发布了新的文献求助10
14秒前
魏娜完成签到,获得积分20
14秒前
xixi发布了新的文献求助10
14秒前
章念波完成签到,获得积分10
16秒前
消消消消气完成签到 ,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621