已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated machine learning‐based model for the prediction of delirium in patients after surgery for degenerative spinal disease

医学 接收机工作特性 置信区间 布里氏评分 机器学习 谵妄 人工智能 外科 内科学 计算机科学 重症监护医学
作者
Yu Zhang,Dong‐Hua Wan,Min Chen,Yunli Li,Hui Ying,Geliang Yao,Zhili Liu,Guomei Zhang
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
卷期号:29 (1): 282-295 被引量:29
标识
DOI:10.1111/cns.14002
摘要

Abstract Objective This study used machine learning algorithms to identify critical variables and predict postoperative delirium ( POD) in patients with degenerative spinal disease. Methods We included 663 patients who underwent surgery for degenerative spinal disease and received general anesthesia. The LASSO method was used to screen essential features associated with POD . Clinical characteristics, preoperative laboratory parameters, and intraoperative variables were reviewed and were used to construct nine machine learning models including a training set and validation set (80% of participants), and were then evaluated in the rest of the study sample (20% of participants). The area under the receiver‐operating characteristic curve ( AUROC ) and Brier scores were used to compare the prediction performances of different models. The eXtreme Gradient Boosting algorithms ( XGBOOST ) model was used to predict POD . The SHapley Additive exPlanations ( SHAP ) package was used to interpret the XGBOOST model. Data of 49 patients were prospectively collected for model validation. Results The XGBOOST model outperformed the other classifier models in the training set (area under the curve [ AUC ]: 92.8%, 95% confidence interval [ CI ]: 90.7%–95.0%), validation set ( AUC : 87.0%, 95% CI : 80.7%–93.3%). This model also achieved the lowest Brier Score. Twelve vital variables, including age, serum albumin, the admission‐to‐surgery time interval, C‐reactive protein level, hypertension, intraoperative blood loss, intraoperative minimum blood pressure, cardiovascular‐cerebrovascular disease, smoking, alcohol consumption, pulmonary disease, and admission‐intraoperative maximum blood pressure difference, were selected. The XGBOOST model performed well in the prospective cohort (accuracy: 85.71%). Conclusion A machine learning model and a web predictor for delirium after surgery for the degenerative spinal disease were successfully developed to demonstrate the extent of POD risk during the perioperative period, which could guide appropriate preventive measures for high‐risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彭于晏应助Finen采纳,获得10
2秒前
ajiang完成签到,获得积分10
3秒前
李健应助Jiaocm采纳,获得10
3秒前
无花果应助fdaqin采纳,获得10
3秒前
我是老大应助谨慎的雨梅采纳,获得10
3秒前
江桥zy给江桥zy的求助进行了留言
4秒前
简单灵凡发布了新的文献求助10
5秒前
6秒前
氰空完成签到,获得积分10
7秒前
8秒前
suchashing完成签到 ,获得积分10
8秒前
wdppkzl完成签到,获得积分20
9秒前
李昀睿发布了新的文献求助10
9秒前
简单灵凡完成签到,获得积分10
12秒前
13秒前
乐乐应助李昀睿采纳,获得10
14秒前
氰空发布了新的文献求助10
15秒前
16秒前
滾滾完成签到,获得积分10
16秒前
fdaqin发布了新的文献求助10
18秒前
左一酱完成签到 ,获得积分10
20秒前
无忧sxt完成签到 ,获得积分10
21秒前
宋笨笨发布了新的文献求助20
22秒前
小竖完成签到 ,获得积分10
23秒前
雨林完成签到,获得积分10
30秒前
Crest发布了新的文献求助10
31秒前
32秒前
FashionBoy应助小粉丝采纳,获得30
37秒前
顾矜应助酶什么幺蛾子采纳,获得10
37秒前
41秒前
学术渣渣发布了新的文献求助10
43秒前
强强1314发布了新的文献求助10
47秒前
汉堡包应助FAN采纳,获得10
48秒前
50秒前
50秒前
小啦啦3082完成签到 ,获得积分10
51秒前
小周发布了新的文献求助10
54秒前
ww发布了新的文献求助10
57秒前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241804
求助须知:如何正确求助?哪些是违规求助? 3775305
关于积分的说明 11855499
捐赠科研通 3430273
什么是DOI,文献DOI怎么找? 1882672
邀请新用户注册赠送积分活动 934673
科研通“疑难数据库(出版商)”最低求助积分说明 841120