材料科学
纳米复合材料
碳纳米管
合金
压痕硬度
腐蚀
复合材料
微观结构
烧结
冶金
作者
Ajay D. Pingale,Ayush Owhal,Sachin U. Belgamwar,Jitendra S. Rathore
标识
DOI:10.1080/00202967.2022.2127512
摘要
In the present work, multi-walled carbon nanotube (MWCNT) nanofiller reinforced copper-nickel alloy (CuNi@MWCNTs) nanocomposites were synthesised by a modified electro-chemical co-deposition followed by compaction and sintering. During this method, CuNi@MWCNTs were co-deposited on a cathode tip at room temperature and collected from the electro-chemical bath in powdered form. Subsequently, the powdered nanocomposites were dried, compacted and sintered to prepare solid pellets. The influence of different amounts (25, 50 and 100 mg L−1) of MWCNT nanofillers in the deposition bath on microstructure, mechanical and anti-corrosion properties of CuNi@MWCNTs nanocomposites was investigated. The microhardness, compressive yield strength and friction coefficient of CuNi@MWCNTs (100 mg L−1) nanocomposites were enhanced by 45.7%, 37.2% and 55.1%, respectively, compared to that of pure CuNi alloy. In addition, the CuNi@MWCNTs nanocomposites obtained also exhibited improved anti-corrosion property in 3.5 wt.% NaCl solution at continuous agitation of 150 rpm and 27°C temperature. Based on the research outcomes, this approach for synthesising CuNi@MWCNTs nanocomposites may be proposed for scale-up industrial trials.
科研通智能强力驱动
Strongly Powered by AbleSci AI