On damage behavior and stability of composite T-shaped stiffened panels under compression after impact considering impact locations

轮缘 材料科学 屈曲 分层(地质) 结构工程 压缩(物理) 破损 复合材料 残余强度 残余物 损伤容限 复合数 数字图像相关 工程类 计算机科学 地质学 古生物学 构造学 俯冲 算法
作者
Ang Peng,Jian Deng,Deng’an Cai,Tao Ren,Dake Wu,Guangming Zhou,Xinwei Wang
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:182: 110295-110295 被引量:28
标识
DOI:10.1016/j.tws.2022.110295
摘要

Impact locations play a critical role in determining the residual performance of the composite stiffened panel, since the local damage behavior at different locations is not identical. The objective of this paper is to systematically investigate the influence of impact locations on damage behavior, stability and residual compression strength of T-shaped stiffened CFRP panels. Low-velocity impact tests are carried out by impacting at the skin center or the flange tip. The damage patterns and post-buckling behavior are monitored by ultrasonic C-scan and digital image correlation. An effective computational framework with explicit formulations considering complicated damage mechanisms is proposed to investigate the details of damage behavior. The skin center impact causes severe fiber breakage and matrix squeezing, while the flange tip impact induces complex damage patterns including ply splitting, fiber breakage, matrix cracks, as well as extensive skin–rib interfacial delamination. Compression after impact results indicate that impact damage at the skin center has little effect on the residual performance of the structure, and the compression failure load is only reduced by 2.02%, from 276.8 kN to 271.2 kN. However, impact damage at the flange tip weakens the supporting effect of the stiffener, leading to early buckling of the local skin. The propagation of the interfacial delamination at the damaged flange tip directly triggers the premature compression failure, resulting in an 18.79% decrease in the failure load, 224.8 kN. Numerical predictions correlate well with experimental data. The reported results may be useful in structural design and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火山发布了新的文献求助10
刚刚
苹果绿完成签到,获得积分20
刚刚
饱满的琦发布了新的文献求助10
刚刚
1秒前
PDD发布了新的文献求助10
1秒前
lzh发布了新的文献求助10
1秒前
阿修罗完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
tian发布了新的文献求助10
3秒前
轻松明雪发布了新的文献求助10
4秒前
5秒前
5秒前
阿修罗发布了新的文献求助30
5秒前
wy发布了新的文献求助10
6秒前
6秒前
Nnn发布了新的文献求助100
6秒前
kuandong完成签到,获得积分10
6秒前
6秒前
姜姗发布了新的文献求助10
7秒前
7秒前
ABC发布了新的文献求助10
9秒前
9秒前
洋芋发布了新的文献求助10
9秒前
Nnn完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Mia完成签到 ,获得积分10
12秒前
ding应助花海采纳,获得10
12秒前
一个人的表情完成签到,获得积分10
12秒前
12秒前
嘎嘎嘎完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
Baraka发布了新的文献求助10
13秒前
lws发布了新的文献求助10
13秒前
轻松明雪完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002