磁流体力学
粘度
物理
流场的拉格朗日和欧拉规范
转化(遗传学)
压缩性
初值问题
电导率
常量(计算机编程)
柯西问题
数学
数学分析
拉格朗日
热力学
数学物理
化学
计算机科学
磁场
量子力学
生物化学
基因
欧拉路径
程序设计语言
作者
Jianxin Zhong,Xue‐Jun Xie
出处
期刊:Symmetry
[Multidisciplinary Digital Publishing Institute]
日期:2022-12-28
卷期号:15 (1): 80-80
摘要
Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b>1).
科研通智能强力驱动
Strongly Powered by AbleSci AI