Fusion of Spectral and Textural Data of Hyperspectral Imaging for Glycine Content Prediction in Beef Using SFCN Algorithms

高光谱成像 偏最小二乘回归 变量消去 计算机科学 模式识别(心理学) 残余物 支持向量机 卷积神经网络 算法 基质(化学分析) 人工智能 数学 化学 机器学习 色谱法 推论
作者
Yu Lv,Fujia Dong,Jiarui Cui,Jie Hao,Ruiming Luo,Songlei Wang,Argenis Rodas‐González,Sijia Liu
出处
期刊:Food Analytical Methods [Springer Science+Business Media]
卷期号:16 (2): 413-425 被引量:20
标识
DOI:10.1007/s12161-022-02425-w
摘要

Glycine, the simplest free amino acid. It is one of the important factors affecting the flavor of beef. In this study, a fast and non-destructive method combining near-infrared hyperspectral (900–1700 nm) and textural data was first proposed to determine the content and distribution of glycine in beef. On the basis of spectral information pre-processing, spectral features were extracted by the interval variable iterative space shrinkage approach, competitive adaptive reweighting algorithm, and uninformative variable elimination (UVE). The glycine content prediction models were established by partial least squares regression, least squares support vector machine, and the optimized shallow full convolutional neural network (SFCN). Among them, the UVE-SFCN model was found to show better results with prediction set determination coefficient (RP2) of 0.8725. Furthermore, textural features were extracted by the gray-level co-occurrence matrix and fused with the spectral information of the best feature band to obtain an optimized UVE-FSCN-fusion model (RP2 = 0.9005, root mean square error = 0.3075, residual predictive deviation = 0.2688). Compared with the full spectrum and characteristic wavelength spectrum models, RP2 was improved by 6.41% and 3.10%. The best fusion model was visualized to represent the distribution of glycine in beef. The results showed that the prediction and visualization of glycine content in beef were feasible and effective, and provided a theoretical basis for the hyperspectral study of meat quality monitoring or the establishment of an online platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小阳发布了新的文献求助10
刚刚
shi发布了新的文献求助10
1秒前
LU发布了新的文献求助10
1秒前
CodeCraft应助美少女壮士采纳,获得10
2秒前
2秒前
LIU完成签到 ,获得积分10
3秒前
4秒前
小高完成签到 ,获得积分10
4秒前
科研通AI5应助crazzzzzy采纳,获得10
5秒前
强健的柚子完成签到 ,获得积分10
6秒前
失眠螃蟹发布了新的文献求助10
6秒前
8秒前
9秒前
田様应助啦啦啦采纳,获得10
9秒前
11秒前
11秒前
文静煜城完成签到,获得积分10
11秒前
12秒前
寒染雾发布了新的文献求助10
14秒前
文静煜城发布了新的文献求助10
15秒前
包子凯越完成签到,获得积分10
16秒前
17秒前
18秒前
Z_BOY完成签到 ,获得积分10
19秒前
20秒前
wangle_17发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
寒染雾完成签到,获得积分10
26秒前
爱学习的婷完成签到 ,获得积分10
26秒前
Jasper应助英勇的笑南采纳,获得10
27秒前
28秒前
shi完成签到 ,获得积分20
29秒前
jiani发布了新的文献求助10
29秒前
emptyyy完成签到,获得积分10
31秒前
机灵太君发布了新的文献求助10
32秒前
33秒前
啦啦啦发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4749219
求助须知:如何正确求助?哪些是违规求助? 4095680
关于积分的说明 12672239
捐赠科研通 3808050
什么是DOI,文献DOI怎么找? 2102318
邀请新用户注册赠送积分活动 1127564
关于科研通互助平台的介绍 1004095