Public discourse and sentiment during Mpox outbreak: an analysis using natural language processing

公共卫生 社会化媒体 政府(语言学) 情绪分析 爆发 公共关系 内容分析 主题模型 政治学 社会学 医学 计算机科学 社会科学 万维网 语言学 人工智能 护理部 病理 哲学
作者
V. S. Anoop,S. Sasirekha* & Sreelakshmi**
出处
期刊:Public Health [Elsevier BV]
卷期号:218: 114-120 被引量:7
标识
DOI:10.1016/j.puhe.2023.02.018
摘要

Mpox has been declared a Public Health Emergency of International Concern by the World Health Organization on July 23, 2022. Since early May 2022, Mpox has been continuously reported in several endemic countries with alarming death rates. This led to several discussions and deliberations on the Mpox virus among the general public through social media and platforms such as health forums. This study proposes natural language processing techniques such as topic modeling to unearth the general public's perspectives and sentiments on growing Mpox cases worldwide. This was a detailed qualitative study using natural language processing on the user-generated comments from social media. A detailed analysis using topic modeling and sentiment analysis on Reddit comments (n = 289,073) that were posted between June 1 and August 5, 2022, was conducted. While the topic modeling was used to infer major themes related to the health emergency and user concerns, the sentiment analysis was conducted to see how the general public responded to different aspects of the outbreak. The results revealed several interesting and useful themes, such as Mpox symptoms, Mpox transmission, international travel, government interventions, and homophobia from the user-generated contents. The results further confirm that there are many stigmas and fear of the unknown nature of the Mpox virus, which is prevalent in almost all topics and themes unearthed. Analyzing public discourse and sentiments toward health emergencies and disease outbreaks is highly important. The insights that could be leveraged from the user-generated comments from public forums such as social media may be important for community health intervention programs and infodemiology researchers. The findings from this study effectively analyzed the public perceptions that may enable quantifying the effectiveness of measures imposed by governmental administrations. The themes unearthed may also benefit health policy researchers and decision-makers to make informed and data-driven decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研菜狗发布了新的文献求助10
刚刚
SYLH应助爱听歌依波采纳,获得10
刚刚
皮肤科发布了新的文献求助10
刚刚
1秒前
雨齐完成签到,获得积分10
1秒前
1秒前
my196755完成签到,获得积分10
2秒前
ZXDDDD完成签到,获得积分10
3秒前
3秒前
科研通AI5应助cuicui采纳,获得10
3秒前
科研通AI5应助高兴大船采纳,获得10
4秒前
结实山水发布了新的文献求助10
4秒前
galvin发布了新的文献求助10
4秒前
5秒前
昏睡的蟠桃应助舒适路人采纳,获得30
5秒前
6秒前
笑点低怀亦完成签到,获得积分10
6秒前
pppt发布了新的文献求助10
7秒前
lmx发布了新的文献求助20
8秒前
对波完成签到,获得积分10
8秒前
英姑应助隐形飞雪采纳,获得10
8秒前
诸葛钢铁发布了新的文献求助10
8秒前
9秒前
晚风完成签到,获得积分10
9秒前
superxiao应助Paris采纳,获得10
9秒前
香蕉觅云应助虚幻代桃采纳,获得10
10秒前
都是发布了新的文献求助10
10秒前
11秒前
科研通AI2S应助对波采纳,获得10
12秒前
Almo完成签到,获得积分10
12秒前
爆米花应助知还采纳,获得10
13秒前
RDQ完成签到,获得积分10
14秒前
Owen应助阿峰采纳,获得10
15秒前
15秒前
莲子清凉下火完成签到,获得积分10
16秒前
16秒前
安安的小板栗完成签到,获得积分10
17秒前
pluto应助舒适路人采纳,获得10
17秒前
17秒前
科研菜狗完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786101
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251844
捐赠科研通 3046973
什么是DOI,文献DOI怎么找? 1672320
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760059