GRAB-Net: Graph-Based Boundary-Aware Network for Medical Point Cloud Segmentation

分割 点云 计算机科学 人工智能 图形 边界(拓扑) 判别式 图像分割 背景(考古学) 特征学习 模式识别(心理学) 理论计算机科学 数学 数学分析 古生物学 生物
作者
Yifan Liu,Wuyang Li,Jie Liu,Hui Chen,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2776-2786 被引量:3
标识
DOI:10.1109/tmi.2023.3265000
摘要

Point cloud segmentation is fundamental in many medical applications, such as aneurysm clipping and orthodontic planning. Recent methods mainly focus on designing powerful local feature extractors and generally overlook the segmentation around the boundaries between objects, which is extremely harmful to the clinical practice and degenerates the overall segmentation performance. To remedy this problem, we propose a GRAph-based Boundary-aware Network (GRAB-Net) with three paradigms, Graph-based Boundary-perception Module (GBM), Outer-boundary Context-assignment Module (OCM), and Inner-boundary Feature-rectification Module (IFM), for medical point cloud segmentation. Aiming to improve the segmentation performance around boundaries, GBM is designed to detect boundaries and interchange complementary information inside semantic and boundary features in the graph domain, where semantics-boundary correlations are modelled globally and informative clues are exchanged by graph reasoning. Furthermore, to reduce the context confusion that degenerates the segmentation performance outside the boundaries, OCM is proposed to construct the contextual graph, where dissimilar contexts are assigned to points of different categories guided by geometrical landmarks. In addition, we advance IFM to distinguish ambiguous features inside boundaries in a contrastive manner, where boundary-aware contrast strategies are proposed to facilitate the discriminative representation learning. Extensive experiments on two public datasets, IntrA and 3DTeethSeg, demonstrate the superiority of our method over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qian4完成签到 ,获得积分10
1秒前
3秒前
根根发布了新的文献求助10
6秒前
一棵树完成签到,获得积分10
7秒前
知行完成签到,获得积分10
7秒前
11完成签到 ,获得积分10
7秒前
酷波er应助调皮寒凝采纳,获得10
7秒前
海王類完成签到,获得积分10
8秒前
13秒前
达达发布了新的文献求助10
14秒前
岁月荣耀完成签到,获得积分10
15秒前
MNF发布了新的文献求助10
17秒前
岁月荣耀发布了新的文献求助10
18秒前
19秒前
好好学习完成签到,获得积分10
20秒前
justin完成签到,获得积分10
21秒前
Benzhdw完成签到,获得积分10
23秒前
xiaohu完成签到,获得积分10
25秒前
mm完成签到 ,获得积分10
25秒前
26秒前
科研通AI5应助达达采纳,获得10
27秒前
晚灯君完成签到 ,获得积分10
28秒前
xiaohu发布了新的文献求助10
30秒前
lr完成签到 ,获得积分10
30秒前
付创完成签到,获得积分10
32秒前
wz完成签到,获得积分10
32秒前
王羊补牢完成签到 ,获得积分10
33秒前
丑123发布了新的文献求助10
33秒前
Akim应助车祥采纳,获得10
36秒前
41秒前
drift完成签到,获得积分10
43秒前
可乐不加冰完成签到 ,获得积分10
43秒前
赘婿应助wwww采纳,获得10
44秒前
45秒前
45秒前
周周发布了新的文献求助10
47秒前
47秒前
Hello应助丑123采纳,获得10
49秒前
49秒前
111发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304