Hybrid Neuro-Particle Swarm Optimization Model for Predicting Depression in Asphalt Pavements

粒子群优化 平均绝对百分比误差 支持向量机 人工神经网络 可用性(结构) 均方误差 线性回归 统计 计算机科学 数学 算法 人工智能 工程类 结构工程
作者
Ralph Alwin M. de Jesus,Dante L. Silva
标识
DOI:10.1109/iccbd56965.2022.10080159
摘要

Roads are critical to the economic development of a country. Pavement distresses affects the serviceability of the roads and road maintenance significantly disrupts the traffic flow and consequently the economy in the surrounding area. The application of machine learning techniques coincides with the shift of several industries to Industry 4.0. The objective of this study is to forecast the depression % occurrence in an asphalt pavement using an artificial neural network (ANN)-particle swarm optimization (PSO) algorithm. The network was developed using the temperature, precipitation, pavement age, and average annual daily traffic (AADT) as the input parameters (IP). The governing model developed using the ANN-PSO algorithm has an architecture of 4-9-1 (input-hidden-output). The governing model has the highest R and lowest Mean Squared Error (MSE). The mean absolute percentage error (MAPE) of the governing model is 6.38%. Using the connection weights (CW) of the governing model, the variable significance of the IP was obtained utilizing the Garson's algorithm (GA) and the AADT is the most influential parameter to the depression % occurrence. Moreover, the governing ANN-PSO model was compared to other prediction modeling methods including ensemble of trees, linear regression, regression trees, and support vector machine (SVM) and it was seen that the ANN-PSO is the superior model among the methods observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
betterme完成签到,获得积分10
刚刚
wangxy完成签到,获得积分10
1秒前
那小子真帅完成签到,获得积分10
2秒前
LLLnna完成签到,获得积分10
2秒前
汉堡包应助man采纳,获得10
3秒前
端庄秋柳发布了新的文献求助10
4秒前
ZC完成签到,获得积分10
6秒前
糖糖完成签到,获得积分10
7秒前
capx完成签到,获得积分10
7秒前
呱呱完成签到 ,获得积分10
7秒前
7秒前
8秒前
我是老大应助流年采纳,获得10
8秒前
9秒前
9秒前
平淡雪枫完成签到 ,获得积分10
10秒前
彭于晏应助fan采纳,获得10
10秒前
科研通AI5应助端庄秋柳采纳,获得10
11秒前
11秒前
11秒前
11秒前
mr完成签到 ,获得积分10
12秒前
黄金矿工发布了新的文献求助10
13秒前
elaine完成签到,获得积分10
13秒前
neiz发布了新的文献求助10
13秒前
zwj003完成签到,获得积分10
14秒前
奋斗靖仇完成签到 ,获得积分10
14秒前
14秒前
不是一个名字完成签到,获得积分10
15秒前
英姑应助hexinyu采纳,获得10
15秒前
ddli发布了新的文献求助10
15秒前
16秒前
闪闪的鹏博完成签到,获得积分10
17秒前
黄秋秋发布了新的文献求助10
18秒前
四糸乃完成签到,获得积分10
18秒前
jiayou发布了新的文献求助10
20秒前
雅典的宠儿完成签到 ,获得积分10
21秒前
大饼哥完成签到,获得积分10
21秒前
竹筏过海完成签到,获得积分0
22秒前
jenningseastera应助四糸乃采纳,获得10
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790