Deep Learning based multi-omics integration robustly predicts survival in liver cancer

组学 队列 医学 肝细胞癌 肿瘤科 内科学 生物信息学 生物
作者
Kumardeep Chaudhary,Olivier Poirion,Liangqun Lu,Lana X. Garmire
标识
DOI:10.1101/114892
摘要

Abstract Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient cohorts is lacking. To fill in this gap, we present a deep learning (DL) based model on HCC that robustly differentiates survival subpopulations of patients in six cohorts. We build the DL based, survival-sensitive model on 360 HCC patients’ data using RNA-seq, miRNA-seq and methylation data from TCGA, which predicts prognosis as good as an alternative model where genomics and clinical data are both considered. This DL based model provides two optimal subgroups of patients with significant survival differences (P=7.13e-6) and good model fitness (C-index=0.68). More aggressive subtype is associated with frequent TP53 inactivation mutations, higher expression of stemness markers ( KRT19 , EPCAM ) and tumor marker BIRC5 , and activated Wnt and Akt signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-JP cohort (n=230, C-index=0.75), NCI cohort (n=221, C-index=0.67), Chinese cohort (n=166, C-index=0.69), E-TABM-36 cohort (n=40, C-index=0.77), and Hawaiian cohort (n=27, C-index=0.82). This is the first study to employ deep learning to identify multi-omics features linked to the differential survival of HCC patients. Given its robustness over multiple cohorts, we expect this workflow to be useful at predicting HCC prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panmm发布了新的文献求助10
刚刚
jian发布了新的文献求助10
1秒前
二两白茶发布了新的文献求助10
1秒前
1秒前
1秒前
认真的雪完成签到,获得积分10
2秒前
852应助可爱的猪猪采纳,获得10
2秒前
猛男发布了新的文献求助10
3秒前
跳跃的惮发布了新的文献求助10
3秒前
orixero应助zimu012采纳,获得10
3秒前
科研通AI5应助忧虑的代容采纳,获得10
4秒前
科研通AI5应助响铃采纳,获得10
4秒前
如意惜文发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
善学以致用应助Bi8bo采纳,获得10
5秒前
二两白茶完成签到,获得积分10
5秒前
搜集达人应助LHT采纳,获得10
6秒前
坚持完成签到,获得积分10
7秒前
小李完成签到,获得积分10
8秒前
完美世界应助自由的聋五采纳,获得10
8秒前
斯文败类应助Joyj99采纳,获得10
8秒前
xu发布了新的文献求助10
9秒前
深情安青应助Adfireu采纳,获得10
9秒前
顾矜应助Panmm采纳,获得10
9秒前
11秒前
乐乐发布了新的文献求助10
11秒前
vision完成签到,获得积分10
11秒前
淡淡菠萝完成签到 ,获得积分10
11秒前
11秒前
11秒前
sdq完成签到,获得积分10
12秒前
华仔应助激昂的凉面采纳,获得10
12秒前
12秒前
香蕉觅云应助xiaolv采纳,获得10
12秒前
jian完成签到,获得积分10
13秒前
cqrao完成签到,获得积分20
13秒前
李健的小迷弟应助mysk采纳,获得10
13秒前
桔梗完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786253
求助须知:如何正确求助?哪些是违规求助? 3332038
关于积分的说明 10252966
捐赠科研通 3047287
什么是DOI,文献DOI怎么找? 1672503
邀请新用户注册赠送积分活动 801315
科研通“疑难数据库(出版商)”最低求助积分说明 760141