AlOx surface passivation of black silicon by spatial ALD: Stability under light soaking and damp heat exposure

钝化 材料科学 黑硅 图层(电子) 晶体硅 降级(电信) 光电子学 复合材料 电子工程 工程类
作者
Ismo T. S. Heikkinen,George Koutsourakis,Sauli Virtanen,Marko Yli‐Koski,Sebastian Wood,Ville Vähänissi,Emma Salmi,Fernando A. Castro,Hele Savin
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:38 (2) 被引量:6
标识
DOI:10.1116/1.5133896
摘要

Scientific breakthroughs in silicon surface passivation have enabled commercial high-efficiency photovoltaic devices making use of the black silicon nanostructure. In this study, the authors report on factors that influence the passivation stability of black silicon realized with industrially viable spatial atomic layer deposited (SALD) aluminum oxide (AlOx) under damp heat exposure and light soaking. Damp heat exposure conditions are 85 °C and 85% relative humidity, and light soaking is performed with 0.6 sun illumination at 75 °C. It is demonstrated that reasonably thick (20 nm) passivation films are required for both black and planar surfaces in order to provide stable surface passivation over a period of 1000 h under both testing conditions. Both surface textures degrade at similar rates with 5 and 2 nm thick films. The degradation mechanism under damp heat exposure is found to be different from that in light soaking. During damp heat exposure, the fixed charge density of AlOx is reduced, which decreases the amount of field-effect passivation. Degradation under light soaking, on the other hand, is likely to be related to interface defects between silicon and the passivating film. Finally, a thin chemically grown SiOx layer at the interface between the AlOx film and the silicon surface is shown to significantly increase the passivation stability under both light soaking and damp heat exposure. The results of this study provide valuable insights into surface passivation degradation mechanisms on nanostructured silicon surfaces and pave the way for the industrial production of highly stable black silicon devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
刚刚
..应助Ethon采纳,获得50
1秒前
科研小乞丐完成签到,获得积分10
2秒前
5秒前
LIDK完成签到,获得积分10
6秒前
程南完成签到,获得积分10
6秒前
6秒前
万能图书馆应助WangzX采纳,获得30
7秒前
9秒前
科研通AI6应助YYL采纳,获得10
11秒前
Labubububu发布了新的文献求助10
11秒前
12秒前
xun发布了新的文献求助10
13秒前
灵巧越彬完成签到 ,获得积分20
13秒前
归海浩阑完成签到,获得积分10
14秒前
水清木华完成签到,获得积分10
15秒前
陈牛逼完成签到,获得积分10
17秒前
哭泣青烟完成签到 ,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
chuyi完成签到,获得积分10
21秒前
甜甜完成签到,获得积分10
23秒前
26秒前
28秒前
Sunshine完成签到,获得积分10
29秒前
Lucas应助msk采纳,获得10
30秒前
善学以致用应助吱吱采纳,获得10
31秒前
科研通AI5应助斯文可仁采纳,获得10
32秒前
小滕发布了新的文献求助10
34秒前
海棠朵朵完成签到 ,获得积分10
34秒前
qqhan完成签到,获得积分20
35秒前
36秒前
37秒前
37秒前
这位同学不知道叫什么好完成签到,获得积分10
41秒前
小滕完成签到,获得积分10
44秒前
45秒前
45秒前
锦慜完成签到 ,获得积分10
46秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Teacher Written Commentary in Second Language Writing Classrooms 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4257940
求助须知:如何正确求助?哪些是违规求助? 3790669
关于积分的说明 11892057
捐赠科研通 3439159
什么是DOI,文献DOI怎么找? 1887364
邀请新用户注册赠送积分活动 938451
科研通“疑难数据库(出版商)”最低求助积分说明 843974