Photoinduced Anion Segregation in Mixed Halide Perovskites

卤化物 离子 材料科学 钙钛矿(结构) 化学 无机化学 结晶学 有机化学
作者
Michael C. Brennan,Anthony Ruth,Prashant V. Kamat,Masaru Kuno
出处
期刊:Trends in chemistry [Elsevier]
卷期号:2 (4): 282-301 被引量:140
标识
DOI:10.1016/j.trechm.2020.01.010
摘要

Ion migration represents an intrinsic perovskite instability, which degrades solar cell performance. Suppressing ion migration is hence key to improving the stability of perovskite solar cells.Halide segregation is a reversible process whereby illumination induces the formation of narrow bandgap I-rich and wide bandgap Br-rich domains within the parent composite. Subsequent emission occurs primarily from I-rich inclusions. Alloyed lead halide perovskites have taken a dominant role in the quest for third-generation solar cells. This is due to optimal light-harvesting properties, which can be tuned across the visible spectrum by mixing halide (X = Cl–, Br–, and I–) anions and A+ cations (A+ = FA+, MA+, and Cs+). Durability issues related to ion movement within the perovskite lattice, however, impede large-scale commercialization. Uniformly mixed halide perovskites [e.g., APb(I1–xBrx)3] reversibly segregate into narrow bandgap I-rich and wide bandgap Br-rich domains during continuous visible illumination. Subsequent I-rich domains reduce local open circuit voltages and decrease mixed halide perovskite solar cell power conversion efficiencies. In this review, we assess the known effects of halide segregation on the structural and optical properties of mixed halide materials, discuss ongoing research to suppress the phenomenon, and provide a mechanistic overview of its underlying origins. Alloyed lead halide perovskites have taken a dominant role in the quest for third-generation solar cells. This is due to optimal light-harvesting properties, which can be tuned across the visible spectrum by mixing halide (X = Cl–, Br–, and I–) anions and A+ cations (A+ = FA+, MA+, and Cs+). Durability issues related to ion movement within the perovskite lattice, however, impede large-scale commercialization. Uniformly mixed halide perovskites [e.g., APb(I1–xBrx)3] reversibly segregate into narrow bandgap I-rich and wide bandgap Br-rich domains during continuous visible illumination. Subsequent I-rich domains reduce local open circuit voltages and decrease mixed halide perovskite solar cell power conversion efficiencies. In this review, we assess the known effects of halide segregation on the structural and optical properties of mixed halide materials, discuss ongoing research to suppress the phenomenon, and provide a mechanistic overview of its underlying origins. APbX3-type lead halide perovskites [A+ = Cs+, CH3NH3+ (MA+), and CH(NH2)2+ (FA+); X = I–, Br–, and Cl–] were discovered over a century ago [1.Wells H.L. Über die cäsium- und kalium-bleihalogenide.Z. Anorg. Allg. Chemie. 1893; 3 (in German): 195-210Crossref Scopus (144) Google Scholar]. Their photovoltaic utility was not realized until 2009 when MAPbI3 was successfully implemented as a light-absorbing layer in dye sensitized solar cells [2.Kojima A. et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J. Am. Chem. Soc. 2009; 131: 6050-6051Crossref PubMed Scopus (15167) Google Scholar]. Since then, lead halide perovskite photovoltaic power conversion efficiencies (PCEs) have seen exceptional growth for single-junction devices (PCE = 3.9% to 25.2% in ~10 years; National Renewable Energy Labs Efficiency Charti). Superior performance stems from exemplary light-harvesting properties. This includes sharp absorption onsets [3.Yin W.J. et al.Unique properties of halide perovskites as possible origins of the superior solar cell performance.Adv. Mater. 2014; 26: 4653-4658Crossref PubMed Scopus (1455) Google Scholar, 4.Shirayama M. et al.Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3.Phys. Rev. Appl. 2016; 5014012Crossref Scopus (264) Google Scholar, 5.Sun S. et al.The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells.Energy Environ. Sci. 2014; 7: 399-407Crossref Google Scholar], large absorption coefficients [3.Yin W.J. et al.Unique properties of halide perovskites as possible origins of the superior solar cell performance.Adv. Mater. 2014; 26: 4653-4658Crossref PubMed Scopus (1455) Google Scholar, 4.Shirayama M. et al.Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3.Phys. Rev. Appl. 2016; 5014012Crossref Scopus (264) Google Scholar, 5.Sun S. et al.The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells.Energy Environ. Sci. 2014; 7: 399-407Crossref Google Scholar], an inherent tolerance to defects [6.Steirer K.X. et al.Defect tolerance in methylammonium lead triiodide perovskite.ACS Energy Lett. 2016; 1: 360-366Crossref Scopus (414) Google Scholar], and excellent charge transport properties [7.Stranks S.D. et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science. 2013; 342: 341-344Crossref PubMed Scopus (7756) Google Scholar,8.deQuilettes D.W. et al.Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30 percent in hybrid perovskite thin films by ligand passivation.ACS Energy Lett. 2016; 1: 438-444Crossref Scopus (383) Google Scholar]. When coupled to fully solution-processable fabrication [5.Sun S. et al.The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells.Energy Environ. Sci. 2014; 7: 399-407Crossref Google Scholar], perovskites represent an inexpensive and efficient light absorbing material for fabricating third-generation solar cells. While MAPbI3 was originally responsible for initiating interest in perovskite photovoltaics [9.Manser J.S. et al.Intriguing optoelectronic properties of metal halide perovskites.Chem. Rev. 2016; 21: 12956-13008Crossref Scopus (1087) Google Scholar], state-of-the-art devices today often employ binary/ternary cation, double-halide perovskite [e.g., FAyMAzCs1–y–zPb(I1–xBrx)3] thin films [10.McMeekin D.P. et al.A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells.Science. 2016; 351: 151Crossref PubMed Scopus (2167) Google Scholar, 11.Saliba M. et al.Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility, and high efficiency.Energy Environ. Sci. 2016; 9: 1989-1997Crossref PubMed Google Scholar, 12.Ono K.L. et al.Progress on perovskite materials and solar cells with mixed cations and halide anions.ACS Appl. Mater. Interfaces. 2017; 9: 30197-30246Crossref PubMed Scopus (368) Google Scholar, 13.Li Z. et al.Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium lead iodide solid state alloys.Chem. Mater. 2016; 28: 284-292Crossref Scopus (1279) Google Scholar, 14.Christians J.A. et al.Stability in perovskite photovoltaics: a paradigm for newfangled technologies.ACS Energy Lett. 2018; 3: 2136-2143Crossref Scopus (101) Google Scholar]. Motivating this is that mixing I– and Br– anions [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar, 16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar, 17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar] permits direct bandgap (Eg) control between pure APbI3 (Eg ~1.5 eV) and APbBr3 (Eg ~2.4 eV) limits [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar, 16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar, 17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar]. A+ alloying additionally permits Eg tunability between MAPbX3, FAPbX3, and CsPbX3 bandgap limits [10.McMeekin D.P. et al.A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells.Science. 2016; 351: 151Crossref PubMed Scopus (2167) Google Scholar, 11.Saliba M. et al.Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility, and high efficiency.Energy Environ. Sci. 2016; 9: 1989-1997Crossref PubMed Google Scholar, 12.Ono K.L. et al.Progress on perovskite materials and solar cells with mixed cations and halide anions.ACS Appl. Mater. Interfaces. 2017; 9: 30197-30246Crossref PubMed Scopus (368) Google Scholar, 13.Li Z. et al.Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium lead iodide solid state alloys.Chem. Mater. 2016; 28: 284-292Crossref Scopus (1279) Google Scholar, 14.Christians J.A. et al.Stability in perovskite photovoltaics: a paradigm for newfangled technologies.ACS Energy Lett. 2018; 3: 2136-2143Crossref Scopus (101) Google Scholar]. Alloying A+ cations simultaneously improves film moisture/heat stabilities since unstable MA+ moieties [18.Manser J.S. et al.Making and breaking of lead halide perovskites.Acc. Chem. Res. 2016; 49: 330-338Crossref PubMed Scopus (505) Google Scholar] are partially or fully replaced with less volatile FA+ and Cs+ cations. This composition-based bandgap tunability has therefore spawned significant interest in exploiting wide gap FAyMAzCs1–y–zPb(I1–xBrx)3 materials in multijunction devices [12.Ono K.L. et al.Progress on perovskite materials and solar cells with mixed cations and halide anions.ACS Appl. Mater. Interfaces. 2017; 9: 30197-30246Crossref PubMed Scopus (368) Google Scholar,19.Kamat P.V. Hybrid perovskites for multijunction tandem solar cells and solar fuels. A virtual issue.ACS Energy Lett. 2018; 3: 28-29Crossref Scopus (33) Google Scholar]. Highlighting this has been the use of a suitably engineered, perovskite top cell layer in a record setting, 29% PCE, tandem solar cell [2.Kojima A. et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J. Am. Chem. Soc. 2009; 131: 6050-6051Crossref PubMed Scopus (15167) Google Scholar]. Box 1, Box 2 provide overviews of the perovskite crystal and electronic structure, as well as the effects of halide and A+ cation alloying on each.Box 1Lead Halide Perovskite Crystal StructureLead halide perovskites are constructed by 3D networks of corner-sharing PbX64– octahedra. A+ cations sterically stabilize interstitial voids. Perovskite lattices typically exist in either orthorhombic (γ-phase), tetragonal (β-phase), or cubic (α-phase) crystal symmetries with increasing temperature. Archetypical α-phases have 180° inter-octahedra bond angles (i.e., Pb-X-Pb). Distorted β- or γ-phases have inter-octahedral bond angles, ranging from ~179° to ~160° due to octahedral tilting. Beyond α-, β-, and γ-phases, FAPbI3 and CsPbI3 thermodynamically stabilize in non-perovskite phases with face-sharing (hexagonal, δhex-phase) and edge-sharing (orthorhombic, δortho-phase) PbX64– octahedra, respectively.Figures IA–F illustrate thermodynamically preferred room and high-temperature (i.e., α-phase) crystal structures for relevant APbX3 compositions. Apparent are structural dependencies on halide and A+ composition. MAPbI3 (Figure IA) adopts a β-phase at 300 K and transitions to its α-phase at ~330 K. MAPbBr3 prefers its α-phase above ~250 K (Figure IB) [74.Lehmann F. et al.The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction.RSC Adv. 2019; 9: 11151-11159Crossref Google Scholar]. FAPbI3 (Figure IC) assumes its α-phase above ~440 K but prefers its non-perovskite δhex-phase at ~300 K [13.Li Z. et al.Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium lead iodide solid state alloys.Chem. Mater. 2016; 28: 284-292Crossref Scopus (1279) Google Scholar]. FAPbBr3, by contrast (Figure ID), adopts its α-phase at temperatures >275 K [75.Schueller E.C. et al.Crystal structure evolution and notable thermal expansion in hybrid perovskite formamidinium tin iodide and formamidinium lead bromide.Inorg. Chem. 2018; 57: 695-701Crossref PubMed Scopus (93) Google Scholar]. CsPbI3 (Figure IE) assumes its non-perovskite δortho-phase with its α-phase favored above ~590 K [13.Li Z. et al.Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium lead iodide solid state alloys.Chem. Mater. 2016; 28: 284-292Crossref Scopus (1279) Google Scholar]. Finally, CsPbBr3 prefers its γ-phase at room temperature and transitions to its α-phase at ~400 K [76.Stoumpos C.C. et al.Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection.Cryst. Growth Des. 2013; 13: 2722-2727Crossref Scopus (990) Google Scholar].Figure IIA demonstrates the evolution of MAPb(I1–xBrx)3 (200) pXRD reflections across its compositional range. Figure IIB summarizes the structural tunability of MAPb(I1–xBrx)3 [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], FAPb(I1–xBrx)3 [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], CsPb(I1–xBrx)3 [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and FA0.83Cs0.17Pb(I1–xBrx)3 [70.Rehman W. et al.Photovoltaic mixed cation lead mixed halide perovskites: links between crystallinity, photostability and electronic properties.Energy Environ. Sci. 2017; 10: 361Crossref Google Scholar] thin films by plotting pseudocubic lattice parameters (a) versus x. Broken lines are fits to the data using Vegard’s law [Eg,mixed = Eg,I(1 – x) + Eg,Brx – bx(1 – x), where b is a bowing parameter accounting for deviations from linearity (b = 0.091 [MAPb(I1–xBrx)3], b = 0.032 [FAPb(I1–xBrx)3], b = 0.230 Å [CsPb(I1–xBrx)3], and b = 0.083 Å [FA0.83Cs0.17Pb(I1–xBrx)3]). Increasing (decreasing) x induces lattice contraction (expansion), causing a to range from ~6.29 to 5.93 Å (MA+) [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], ~6.35 to 5.98 Å (FA+) [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], 6.19 to 5.85 Å (Cs+) [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and ~6.31 to 5.95 Å [FA+/Cs+] between x = 0 and 1.0. This, in turn, shifts Bragg reflections to higher (lower) degrees 2θ. These differences nominally permit resolution of photosegregated I-rich and Br-rich domains via pXRD.Figure IIHalide-Dependent APb(I1–xBrx)3 Perovskite Thin Film Lattice Parameters.Show full caption(A) (200) Bragg reflections from pXRD patterns of x = 0–1.0 MAPb(I1–xBrx)3. Adapted, with permission, from [20.Hoke E.T. et al.Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.Chem. Sci. 2015; 6: 613-617Crossref PubMed Google Scholar]. (B) Pseudocubic lattice constants versus x for MAPb(I1–xBrx)3 (blue x) [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], FAPb(I1–xBrx)3 (red *) [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], CsPb(I1–xBrx)3 (green +) [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and FA0.83Cs0.17(I1–xBrx)3 (black diamonds) [70.Rehman W. et al.Photovoltaic mixed cation lead mixed halide perovskites: links between crystallinity, photostability and electronic properties.Energy Environ. Sci. 2017; 10: 361Crossref Google Scholar]. Figure IIA reprinted, with permission, from [20.Hoke E.T. et al.Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.Chem. Sci. 2015; 6: 613-617Crossref PubMed Google Scholar]. Data in (B) extracted using WebPlotDigitalizerii.View Large Image Figure ViewerDownload (PPT)Box 2Lead Halide Perovskite Electronic Structure and Bandgap TunabilityFigure IA summarizes optical absorption spectra of MAPb(I1–xBrx)3 thin films across their compositional range [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar]. Bandgap tunability stems from physical changes to Pb–X bond distances such that shorter Pb–X equals larger bandgaps (Box 1). Figure IB plots pseudocubic mixed halide perovskite thin film Eg-values from x = 0 to 1.0 for MAPb(I1–xBrx)3 [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], FAPb(I1–xBrx)3 [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], CsPb(I1–xBrx)3 [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and FA0.83Cs0.17Pb(I1–xBrx)3 [70.Rehman W. et al.Photovoltaic mixed cation lead mixed halide perovskites: links between crystallinity, photostability and electronic properties.Energy Environ. Sci. 2017; 10: 361Crossref Google Scholar]. Bandgaps range from 1.58 to 2.28 eV (785 to 544 nm), 1.48 to 2.23 eV (840 to 556 nm), 1.80 to 2.35 eV (690 to 528 nm), and 1.58 to 2.26 eV (785 to 548 nm) for A = MA+, FA+, Cs+, and FA+/Cs+, respectively. Data are fit using a Vegard’s law expression of the form Eg,mix = Eg,I(1 – x) + Eg,Brx – bx(1 – x) where b is a bowing parameter to account for deviations from linearity (b = 0.33 eV [MAPb(I1–xBrx)3], b = 0.15 eV [FAPb(I1–xBrx)3], b = 0.35 eV [CsPb(I1–xBrx)3], and b = 0.35 eV [FA0.83Cs0.17Pb(I1–xBrx)3]). Differences between pure Br and I perovskites bandgaps are of order ~0.5 eV, enabling I-rich and Br-rich spectral features to be resolved following halide photosegregation. Moreover, Figure IC shows a band level diagram for APbI3 and APbBr3 (A = MA+, FA+, and Cs+), which illustrates differences in the absolute band edges of each material [37.Tao S. et al.Absolute energy level positions in tin- and lead-based halide perovskites.Nat. Commun. 2019; 102560Crossref PubMed Scopus (233) Google Scholar]. Favorable band offsets between I– and Br– materials will lead to charge flow into I-rich domains during photoinduced halide segregation.Figure IBandgap Tunability in APb(I1–xBrx)3 Perovskite Thin Films.Show full caption(A) Absorption coefficients for MAPb(I1–xBrx)3 thin films from diffuse spectral reflection and transmission measurements. (B) APb(I1–xBrx)3 Eg versus x for thin films where A = MA+ (blue x) [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], FA+ (red *) [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], Cs+ (green +) [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and FA+/Cs+ (black diamonds) [70.Rehman W. et al.Photovoltaic mixed cation lead mixed halide perovskites: links between crystallinity, photostability and electronic properties.Energy Environ. Sci. 2017; 10: 361Crossref Google Scholar]. (A) Reprinted, with permission, from [20.Hoke E.T. et al.Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.Chem. Sci. 2015; 6: 613-617Crossref PubMed Google Scholar]. Data in (B) extractedii from [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar, 16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar, 17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar,70.Rehman W. et al.Photovoltaic mixed cation lead mixed halide perovskites: links between crystallinity, photostability and electronic properties.Energy Environ. Sci. 2017; 10: 361Crossref Google Scholar]. (C) Band offset diagram for APbI3 and APbBr3 (A = MA+, FA+, and Cs+). Data extractedii from [37.Tao S. et al.Absolute energy level positions in tin- and lead-based halide perovskites.Nat. Commun. 2019; 102560Crossref PubMed Scopus (233) Google Scholar].View Large Image Figure ViewerDownload (PPT) Lead halide perovskites are constructed by 3D networks of corner-sharing PbX64– octahedra. A+ cations sterically stabilize interstitial voids. Perovskite lattices typically exist in either orthorhombic (γ-phase), tetragonal (β-phase), or cubic (α-phase) crystal symmetries with increasing temperature. Archetypical α-phases have 180° inter-octahedra bond angles (i.e., Pb-X-Pb). Distorted β- or γ-phases have inter-octahedral bond angles, ranging from ~179° to ~160° due to octahedral tilting. Beyond α-, β-, and γ-phases, FAPbI3 and CsPbI3 thermodynamically stabilize in non-perovskite phases with face-sharing (hexagonal, δhex-phase) and edge-sharing (orthorhombic, δortho-phase) PbX64– octahedra, respectively. Figures IA–F illustrate thermodynamically preferred room and high-temperature (i.e., α-phase) crystal structures for relevant APbX3 compositions. Apparent are structural dependencies on halide and A+ composition. MAPbI3 (Figure IA) adopts a β-phase at 300 K and transitions to its α-phase at ~330 K. MAPbBr3 prefers its α-phase above ~250 K (Figure IB) [74.Lehmann F. et al.The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction.RSC Adv. 2019; 9: 11151-11159Crossref Google Scholar]. FAPbI3 (Figure IC) assumes its α-phase above ~440 K but prefers its non-perovskite δhex-phase at ~300 K [13.Li Z. et al.Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium lead iodide solid state alloys.Chem. Mater. 2016; 28: 284-292Crossref Scopus (1279) Google Scholar]. FAPbBr3, by contrast (Figure ID), adopts its α-phase at temperatures >275 K [75.Schueller E.C. et al.Crystal structure evolution and notable thermal expansion in hybrid perovskite formamidinium tin iodide and formamidinium lead bromide.Inorg. Chem. 2018; 57: 695-701Crossref PubMed Scopus (93) Google Scholar]. CsPbI3 (Figure IE) assumes its non-perovskite δortho-phase with its α-phase favored above ~590 K [13.Li Z. et al.Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium lead iodide solid state alloys.Chem. Mater. 2016; 28: 284-292Crossref Scopus (1279) Google Scholar]. Finally, CsPbBr3 prefers its γ-phase at room temperature and transitions to its α-phase at ~400 K [76.Stoumpos C.C. et al.Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection.Cryst. Growth Des. 2013; 13: 2722-2727Crossref Scopus (990) Google Scholar]. Figure IIA demonstrates the evolution of MAPb(I1–xBrx)3 (200) pXRD reflections across its compositional range. Figure IIB summarizes the structural tunability of MAPb(I1–xBrx)3 [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], FAPb(I1–xBrx)3 [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], CsPb(I1–xBrx)3 [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and FA0.83Cs0.17Pb(I1–xBrx)3 [70.Rehman W. et al.Photovoltaic mixed cation lead mixed halide perovskites: links between crystallinity, photostability and electronic properties.Energy Environ. Sci. 2017; 10: 361Crossref Google Scholar] thin films by plotting pseudocubic lattice parameters (a) versus x. Broken lines are fits to the data using Vegard’s law [Eg,mixed = Eg,I(1 – x) + Eg,Brx – bx(1 – x), where b is a bowing parameter accounting for deviations from linearity (b = 0.091 [MAPb(I1–xBrx)3], b = 0.032 [FAPb(I1–xBrx)3], b = 0.230 Å [CsPb(I1–xBrx)3], and b = 0.083 Å [FA0.83Cs0.17Pb(I1–xBrx)3]). Increasing (decreasing) x induces lattice contraction (expansion), causing a to range from ~6.29 to 5.93 Å (MA+) [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], ~6.35 to 5.98 Å (FA+) [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], 6.19 to 5.85 Å (Cs+) [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and ~6.31 to 5.95 Å [FA+/Cs+] between x = 0 and 1.0. This, in turn, shifts Bragg reflections to higher (lower) degrees 2θ. These differences nominally permit resolution of photosegregated I-rich and Br-rich domains via pXRD. Figure IA summarizes optical absorption spectra of MAPb(I1–xBrx)3 thin films across their compositional range [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar]. Bandgap tunability stems from physical changes to Pb–X bond distances such that shorter Pb–X equals larger bandgaps (Box 1). Figure IB plots pseudocubic mixed halide perovskite thin film Eg-values from x = 0 to 1.0 for MAPb(I1–xBrx)3 [15.Noh J.H. et al.Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.Nano Lett. 2013; 4: 1764-1769Crossref Scopus (3752) Google Scholar], FAPb(I1–xBrx)3 [16.Eperon G.E. et al.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci. 2014; 7: 982-988Crossref Scopus (2932) Google Scholar], CsPb(I1–xBrx)3 [17.Beal R.E. et al.Cesium lead halide perovskites with improved stability for tandem solar cells.J. Phys. Chem. Lett. 2016; 7: 746Crossref PubMed Scopus (855) Google Scholar], and FA0.83Cs0.17Pb(I1–xBrx)3 [70.Rehman W. et al.Photovoltaic mixed cation lead mixed halide perovskites: links between crystallinity, photostability and electronic properties.Energy Environ. Sci. 2017; 10: 361Crossref Google Scholar]. Bandgaps range from 1.58 to 2.28 eV (785 to 544 nm), 1.48 to 2.23 eV (840 to 556 nm), 1.80 to 2.35 eV (690 to 528 nm), and 1.58 to 2.26 eV (785 to 548 nm) for A = MA+, FA+, Cs+, and FA+/Cs+, respectively. Data are fit using a Vegard’s law expression of the form Eg,mix = Eg,I(1 – x) + Eg,Brx – bx(1 – x) where b is a bowing parameter to account for deviations from linearity (b = 0.33 eV [MAPb(I1–xBrx)3], b = 0.15 eV [FAPb(I1–xBrx)3], b = 0.35 eV [CsPb(I1–xBrx)3], and b = 0.35 eV [FA0.83Cs0.17Pb(I1–xBrx)3]). Differences between pure Br and I perovskites bandgaps are of order ~0.5 eV, enabling I-rich and Br-rich spectral features to be resolved following halide photosegregation. Moreover, Figure IC shows a band level diagram for APbI3 and APbBr3 (A = MA+, FA+, and Cs+), which illustrates differences in the absolute band edges of each material [37.Tao S. et al.Absolute energy level positions in tin- and lead-based halide perovskites.Nat. Commun. 2019; 102560Crossref PubMed Scopus (233) Google Scholar]. Favorable band offsets between I– and Br– materials will lead to charge flow into I-rich domains during photoinduced halide segregation. Despite the earlier-mentioned stability and efficiency gains, alloyed perovskite photovoltaics still lack suitable long-term durability under standard solar cell operating conditions [14.Christians J.A. et al.Stability in perovskite photovoltaics: a parad
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zqy发布了新的文献求助10
1秒前
朝露发布了新的文献求助10
1秒前
11完成签到,获得积分10
2秒前
2秒前
陈运气完成签到 ,获得积分20
4秒前
4秒前
SuperFAN完成签到,获得积分10
5秒前
研友_LkDm3n发布了新的文献求助10
8秒前
halo发布了新的文献求助10
10秒前
12秒前
852应助耿耿采纳,获得10
12秒前
14秒前
Realovery完成签到,获得积分0
15秒前
15秒前
15秒前
16秒前
酷酷的王发布了新的文献求助10
16秒前
哌替啶完成签到 ,获得积分10
18秒前
hhh发布了新的文献求助10
19秒前
Lucas应助errui采纳,获得10
19秒前
hanatae发布了新的文献求助10
19秒前
彦成完成签到 ,获得积分10
23秒前
23秒前
传奇3应助bxyyy采纳,获得10
23秒前
oysp发布了新的文献求助10
24秒前
hhh完成签到,获得积分10
28秒前
hanatae完成签到,获得积分10
28秒前
30秒前
32秒前
33秒前
lc完成签到,获得积分10
36秒前
36秒前
科目三应助科研通管家采纳,获得10
36秒前
benben应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
37秒前
gakiki完成签到 ,获得积分10
37秒前
星辰大海应助无情的盼兰采纳,获得10
37秒前
Selonfer发布了新的文献求助10
39秒前
SOLOMON应助bxyyy采纳,获得20
39秒前
39秒前
高分求助中
FILTRATION OF NODULAR IRON WITH CERAMIC FOAM FILTERS 1000
A STUDY OF THE EFFECTS OF CHILLS AND PROCESS-VARIABLES ON THE SOLIDIFICATION OF HEAVY-SECTION DUCTILE IRON CASTINGS 1000
INFLUENCE OF METAL VARIABLES ON THE STRUCTURE AND PROPERTIES OF HEAVY SECTION DUCTILE IRON 1000
Filtration of inmold ductile iron 1000
Teaching Social and Emotional Learning in Physical Education 900
Work hardening in tension and fatigue : proceedings of a symposium, Cincinnati, Ohio, November 11, 1975 800
The Instrument Operations and Calibration System for TerraSAR-X 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2349256
求助须知:如何正确求助?哪些是违规求助? 2055505
关于积分的说明 5118372
捐赠科研通 1786178
什么是DOI,文献DOI怎么找? 892216
版权声明 556939
科研通“疑难数据库(出版商)”最低求助积分说明 476023