Gated Stacked Target-Related Autoencoder: A Novel Deep Feature Extraction and Layerwise Ensemble Method for Industrial Soft Sensor Application

自编码 计算机科学 软传感器 人工智能 特征(语言学) 过程(计算) 模式识别(心理学) 特征提取 深度学习 领域(数学) 数据挖掘 机器学习 数学 哲学 操作系统 纯数学 语言学
作者
Qingqiang Sun,Zhiqiang Ge
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (5): 3457-3468 被引量:97
标识
DOI:10.1109/tcyb.2020.3010331
摘要

These days, data-driven soft sensors have been widely applied to estimate the difficult-to-measure quality variables in the industrial process. How to extract effective feature representations from complex process data is still the difficult and hot spot in the soft sensing application field. Deep learning (DL), which has made great progresses in many fields recently, has been used for process monitoring and quality prediction purposes for its outstanding nonlinear modeling and feature extraction abilities. In this work, deep stacked autoencoder (SAE) is introduced to construct a soft sensor model. Nevertheless, conventional SAE-based methods do not take information related to target values in the pretraining stage and just use the feature representations in the last hidden layer for final prediction. To this end, a novel gated stacked target-related autoencoder (GSTAE) is proposed for improving modeling performance in view of the above two issues. By adding prediction errors of target values into the loss function when executing a layerwise pretraining procedure, the target-related information is used to guide the feature learning process. Besides, gated neurons are utilized to control the information flow from different layers to the final output neuron that take full advantage of different levels of abstraction representations and quantify their contributions. Finally, the effectiveness and feasibility of the proposed approach are verified in two real industrial cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的苗条关注了科研通微信公众号
刚刚
我是老大应助鱼鱼鱼采纳,获得10
1秒前
1秒前
2秒前
精明外套发布了新的文献求助10
3秒前
飞快的珩发布了新的文献求助10
4秒前
4秒前
搞科研的崔桑完成签到,获得积分10
6秒前
7秒前
7秒前
一一发布了新的文献求助10
8秒前
科研通AI5应助橘子味的风采纳,获得10
10秒前
啵啵洋发布了新的文献求助10
11秒前
11秒前
精明外套完成签到,获得积分10
12秒前
鱼鱼鱼发布了新的文献求助10
13秒前
14秒前
14秒前
亦舒发布了新的文献求助10
15秒前
Sunshine完成签到,获得积分10
15秒前
缥缈的丹翠关注了科研通微信公众号
16秒前
科研通AI5应助大恩区采纳,获得10
16秒前
17秒前
Owen应助WWW采纳,获得10
18秒前
大小宇完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
风起完成签到,获得积分10
19秒前
19秒前
19秒前
赘婿应助莫比乌斯采纳,获得10
19秒前
Akim应助萧衍采纳,获得10
20秒前
20秒前
yuiii完成签到,获得积分10
20秒前
21秒前
21秒前
华仔应助MXX采纳,获得10
23秒前
风起发布了新的文献求助10
23秒前
搞怪冷风发布了新的文献求助10
23秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462