框架(结构)
计算机科学
卫星图像
基线(sea)
任务(项目管理)
自然灾害
工作(物理)
卫星
数据科学
人工智能
遥感
工程类
地理
气象学
系统工程
土木工程
机械工程
海洋学
航空航天工程
地质学
作者
Ethan Weber,Hassan Kané
出处
期刊:Cornell University - arXiv
日期:2020-04-12
被引量:4
摘要
Automatic change detection and disaster damage assessment are currently procedures requiring a huge amount of labor and manual work by satellite imagery analysts. In the occurrences of natural disasters, timely change detection can save lives. In this work, we report findings on problem framing, data processing and training procedures which are specifically helpful for the task of building damage assessment using the newly released xBD dataset. Our insights lead to substantial improvement over the xBD baseline models, and we score among top results on the xView2 challenge leaderboard. We release our code used for the competition.
科研通智能强力驱动
Strongly Powered by AbleSci AI