材料科学
压痕硬度
放电等离子烧结
微观结构
维氏硬度试验
冶金
合金
钴
作者
Nelson Damásio Ferreira,Ricardo Mendes Leal Neto,Marcello Filgueira,Manuel Fellipe Rodrigues Pais Alves,Claudinei dos Santos,Alfeu Saraiva Ramos
标识
DOI:10.1590/1980-5373-mr-2020-0337
摘要
Ti-6Al-4V and TiAl-based alloys are widely used for fabricating the implantable orthopedic devices and automotive components, respectively. Ti6Si2B-based alloys are attractive for use in orthopedic components because their higher hardness, superior biocompatibility and corrosion resistance in simulated body fluid than Ti and Ti-6Al-4V alloy. Limited information on Ti6Si2B stability in Co-dopped 67Ti-22Si-11B alloys are available in literature. This work presents the effect of cobalt doping and milling time on microstructure and Vickers microhardness of 65Ti-2Co-22Si-11B and 61Ti-6Co-22Si-11B (at-%) alloys produced by spark plasma sintering at 1100 oC for 12min using 20MPa. Samples were characterized by X ray diffraction, scanning electron microscopy, energy dispersive spectrometry, laser particle size analysis, and Vickers microhardness. Sintered alloys with 2 and 6at-%Co indicated the major presence of Ti6Si2B and Ti5Si3 dissolving up to 2.7 and 4.2 at-%Co, respectively, besides the minor precipitates of CoTi2 (4.4-16.7at-%Si) and CoTi (4.6-4.7at-%Si). Vickers microhardness of the sintered 65Ti-2Co-22Si-11B and 61Ti-6Co-22Si-11B alloys were in the range of 950-1050 and 1050-1150HV, respectively. Although the increase from 2 to 6at-%Co has reduced the Ti6Si2B stability, the Co-rich phases increased their hardness values up to 1150HV (11.3GPa), which are superior than those of commercial Ti alloys used for joint orthopedic components and automotive rotating parts.
科研通智能强力驱动
Strongly Powered by AbleSci AI