Deep Clustering with LSTM for Vital Signs Separation in Contact-free Heart Rate Estimation

心跳 光谱图 计算机科学 聚类分析 人工智能 模式识别(心理学) 源分离 自回归模型 语音识别 分割 数学 统计 计算机安全
作者
Chen Ye,Guan Gui,Tomoaki Ohtsuki
标识
DOI:10.1109/icc40277.2020.9149328
摘要

So far, most separation approaches of vital signs such as heartbeat and respiration, are implemented based on linear mixtures. However, some literatures have reported that non-linear mixtures actually occur in the associated applications, e.g., heart rate (HR) estimation with Doppler radar, where the simple linear demixing architecture may limit the effect of source separation. In addition, the human motions during HR measurement further complicate the mixing processes. The issue motivates us to exploit a more suitable separation approach to deal with contact-free HR estimation, considering non-linear mixtures including motions. A semi-supervised deep clustering (DC) is proposed to separate the three mixed sources of heartbeat, respiration, and motions, by segmenting the spectrogram of Doppler signal. First, through training a deep recurrent neural network (RNN) with long short-term memory (LSTM) via heartbeat/respiration-only data, the embeddings to each frame-sample from spectrogram can be acquired, which enables feature optimization in a lower dimensional space. Then, in the test phase, K-means clusters the embeddings associated with each source, to infer the masks used for spectrogram segmentation. The proposed deep clustering has three main strengths: It (i) gets rid of the restriction of mixture class, relying on data mining; (ii) can handle three-source mixtures by training two sorts of source-independent samples; (iii) only requires the mixtures from single-channel. The HR measurement experiments on subjects' sitting still and typing, validate the improvements of accuracy and robustness by our proposal, over some prevailing approaches in signal decomposition or separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘇q完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
伊古比古完成签到 ,获得积分10
5秒前
5秒前
6秒前
Peter Pan发布了新的文献求助10
6秒前
7秒前
123发布了新的文献求助10
8秒前
8秒前
叶子发布了新的文献求助10
8秒前
搜集达人应助钱念波采纳,获得10
9秒前
9秒前
9秒前
Rita发布了新的文献求助10
11秒前
devilito发布了新的文献求助10
13秒前
布丁发布了新的文献求助10
13秒前
温木西完成签到,获得积分10
14秒前
acutelily发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
打打应助布丁采纳,获得10
18秒前
大魁完成签到,获得积分10
20秒前
20秒前
yi完成签到,获得积分10
20秒前
20秒前
开朗的之瑶完成签到,获得积分10
21秒前
21秒前
丘比特应助acutelily采纳,获得10
22秒前
Wy发布了新的文献求助10
22秒前
汉堡包应助德瓦达采纳,获得10
23秒前
Ava应助文静元霜采纳,获得10
23秒前
情怀应助可可采纳,获得10
24秒前
钱念波发布了新的文献求助10
24秒前
英俊的铭应助王三歲采纳,获得10
26秒前
酒心可可发布了新的文献求助20
26秒前
miao完成签到,获得积分10
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3929934
求助须知:如何正确求助?哪些是违规求助? 3474995
关于积分的说明 10984584
捐赠科研通 3205045
什么是DOI,文献DOI怎么找? 1770938
邀请新用户注册赠送积分活动 858877
科研通“疑难数据库(出版商)”最低求助积分说明 796838