心跳
光谱图
计算机科学
聚类分析
人工智能
模式识别(心理学)
源分离
自回归模型
语音识别
分割
数学
统计
计算机安全
作者
Chen Ye,Guan Gui,Tomoaki Ohtsuki
标识
DOI:10.1109/icc40277.2020.9149328
摘要
So far, most separation approaches of vital signs such as heartbeat and respiration, are implemented based on linear mixtures. However, some literatures have reported that non-linear mixtures actually occur in the associated applications, e.g., heart rate (HR) estimation with Doppler radar, where the simple linear demixing architecture may limit the effect of source separation. In addition, the human motions during HR measurement further complicate the mixing processes. The issue motivates us to exploit a more suitable separation approach to deal with contact-free HR estimation, considering non-linear mixtures including motions. A semi-supervised deep clustering (DC) is proposed to separate the three mixed sources of heartbeat, respiration, and motions, by segmenting the spectrogram of Doppler signal. First, through training a deep recurrent neural network (RNN) with long short-term memory (LSTM) via heartbeat/respiration-only data, the embeddings to each frame-sample from spectrogram can be acquired, which enables feature optimization in a lower dimensional space. Then, in the test phase, K-means clusters the embeddings associated with each source, to infer the masks used for spectrogram segmentation. The proposed deep clustering has three main strengths: It (i) gets rid of the restriction of mixture class, relying on data mining; (ii) can handle three-source mixtures by training two sorts of source-independent samples; (iii) only requires the mixtures from single-channel. The HR measurement experiments on subjects' sitting still and typing, validate the improvements of accuracy and robustness by our proposal, over some prevailing approaches in signal decomposition or separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI