Electrodeposition of Metal Oxides on Spray-Coated Nanostructured Carbon Framework As High Performance Electrode Materials for Asymmetric Pseudocapacitors

假电容器 材料科学 纳米技术 碳纳米管 石墨烯 超级电容器 电极 阳极 阴极 假电容 碳纤维 电泳沉积 复合材料 复合数 电化学 化学 物理化学 涂层
作者
Clémence Rogier,Grégory Pognon,Paolo Bondavalli,Christophe Galindo,Giao Nguyen,Cédric Vancaeyzeele,Pierre‐Henri Aubert
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (4): 581-581
标识
DOI:10.1149/ma2020-014581mtgabs
摘要

Combining transition metal oxides and nanostructured hierarchical carbon materials is considered as one of the best strategy to achieve high performance supercapacitors electrodes [1]. Here is reported a novel way to increase energy densities while maintaining high power densities exploiting pseudocapacitance and nanostructuration of electrode materials. In the first part of this study, carbon nanotubes/graphene/manganese dioxide nanostructured films were designed as pseudocapacitors electrodes (Fig. A). While MnO 2 is a well-known pseudocapacitive cathode material and will increase energy densities [2], nanostructured carbon materials provide high electronic conductivity and specific surface. The challenge is to assemble these three materials (CNTs/G/MnO 2 ) into a nanostructured electrode with controlled homogeneity, morphology, and composition. First, carbon nanotubes and graphene foils are associated in a specific multi-layered organization onto a current collector by dynamic spray gun deposition. It creates a controlled porous network in the electrodes. This deposition method used for nanostructuration of thin films generates homogeneous mats with tunable thickness. This structuration of the carbon nanomaterials is reproducible, easily scalable and low-cost considering that it is compatible with large surfaces. The CNTs/G multilayered structure provides a good accessibility with an appropriate porosity for ion insertion (pores of 2 to 6 nm), a high specific surface area (~360 m 2 /g), and an electrically conductive network (~3600 S/m), all necessary to confer high power densities. Our approach consists in synthesizing MnO 2 by anodic electrodeposition directly onto the conductive nanostructured carbon framework. Electrodeposition is very versatile [3] and simply. The morphology of the manganese dioxide (shape, particles size, and mass loading) can be controlled and the electrochemical performances can be tuned by adjusting the deposition conditions. The MnO 2 nanoparticles are deposited through the thickness (seen in cross section Figure A) of the carbon mat with controlled sizes ranging from 50 to 200 nm. Materials are characterized by SEM, XPS, microporosity analysis and electrochemistry. Results demonstrate that the capacitance can reach up to 220 F/g for binder free electrodes with a MnO 2 mass loading of 55%. The pseudocapacitive oxide insures a faradaic contribution that enhances the specific capacitance by a factor 5 compared to the carbon nanomaterials structure only. The electrodes present an outstanding stability of 96% over 3 000 cycles in aqueous electrolytes (Na 2 SO 4 1M). Then an asymmetric system with activated carbon as the negative electrode is developed to demonstrate the energy density increase compared to a symmetric system with activated carbon as electrodes. When adding MnO 2 to the cathode the exploitable potential window can be widen up to 1.4V and the energy density increases from 1 Wh/kg to 6 Wh/kg for a power density of 0.7 kW/kg. Stability of 85% in capacitance was demonstrated for 20 000 cycles on this system. The second part of the contribution is devoted to molybdenum oxide (MoO 3 ) that has been recently introduced as an appropriate anode material for pseudocapacitors in view of its low cost nature and high electrochemical activity [4,5]. It has been reported to be suitable in terms of potential window as a negative counterpart to manganese oxide in asymmetric pseudocapacitors [6]. This study focuses on the development of a carbon nanotubes/molybdenum oxide composite by spray-coating and cathodic electrodeposition (Fig. B). The growth of this specific metal oxide is quite complex with several possible intermediaries presenting different oxidation states depending on the environment [7]. Studies on the impact of the chemical and electrochemical conditions on the morphology, crystallinity, and homogeneity of the oxide layer are performed and thermal treatments aiming to enhance these parameters and stabilize the electrochemical performances are explored. Solubility of the deposited MoO x has been found to be a major issue in aqueous electrolytes and in that regard tests have been performed in organic electrolytes with lithium salts to insure stability of the final system. First results obtained for a simple binary MoO x -CNTs electrode already present a good maximum specific capacitance of 110 F/g. [1] National Science Review , 4, 1 (2017) 71–90 [2] Prog. Mater. Sci. 74 (2015) 51-124. [3] Ceram. Int. 44 (2018) 10863-10870. [4] Chem. Commun., 2011, 47, 10058–10060 5] Materials Letters 66 (2012) 102–105 [6] Adv. Funct. Mater. 2013, 23, 5074–5083 [7] Analytica Chimica Acta 496 (2003) 39–51 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feiying88发布了新的文献求助10
刚刚
勤恳的雪卉完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Ava应助mylian采纳,获得10
7秒前
Mr.egg完成签到,获得积分10
8秒前
小号完成签到,获得积分10
8秒前
梦溪完成签到 ,获得积分10
10秒前
feiying88完成签到,获得积分10
10秒前
11秒前
闫栋完成签到 ,获得积分10
15秒前
16秒前
Zp完成签到,获得积分10
16秒前
命比黄连苦三分完成签到,获得积分20
17秒前
xiaoxue发布了新的文献求助10
18秒前
甜美雨泽完成签到,获得积分10
19秒前
香锅不要辣完成签到 ,获得积分10
21秒前
大大完成签到 ,获得积分10
23秒前
25秒前
hakuna_matata完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
轩辕剑身完成签到,获得积分10
28秒前
32秒前
缓慢雅青完成签到 ,获得积分0
32秒前
33秒前
武雨寒发布了新的文献求助10
34秒前
哈利波特完成签到,获得积分10
34秒前
35秒前
陶醉的烤鸡完成签到 ,获得积分10
35秒前
jinyu完成签到,获得积分10
36秒前
harvey1989发布了新的文献求助10
37秒前
LIUqi发布了新的文献求助10
37秒前
王二毛完成签到,获得积分10
40秒前
祯果粒完成签到,获得积分10
40秒前
文文发布了新的文献求助10
42秒前
xiaoxue完成签到,获得积分10
44秒前
无花果应助玛卡巴卡采纳,获得10
44秒前
科研通AI2S应助玛卡巴卡采纳,获得10
44秒前
科研通AI5应助玛卡巴卡采纳,获得10
45秒前
平常的毛豆应助玛卡巴卡采纳,获得10
45秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864066
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649308
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990