GRIP++: Enhanced Graph-based Interaction-aware Trajectory Prediction for Autonomous Driving

计算机科学 图形 弹道 编码器 人工智能 理论计算机科学 物理 天文 操作系统
作者
Xin Li,Xiaowen Ying,Mooi Choo Chuah
出处
期刊:Cornell University - arXiv 被引量:83
标识
DOI:10.48550/arxiv.1907.07792
摘要

Despite the advancement in the technology of autonomous driving cars, the safety of a self-driving car is still a challenging problem that has not been well studied. Motion prediction is one of the core functions of an autonomous driving car. Previously, we propose a novel scheme called GRIP which is designed to predict trajectories for traffic agents around an autonomous car efficiently. GRIP uses a graph to represent the interactions of close objects, applies several graph convolutional blocks to extract features, and subsequently uses an encoder-decoder long short-term memory (LSTM) model to make predictions. Even though our experimental results show that GRIP improves the prediction accuracy of the state-of-the-art solution by 30%, GRIP still has some limitations. GRIP uses a fixed graph to describe the relationships between different traffic agents and hence may suffer some performance degradations when it is being used in urban traffic scenarios. Hence, in this paper, we describe an improved scheme called GRIP++ where we use both fixed and dynamic graphs for trajectory predictions of different types of traffic agents. Such an improvement can help autonomous driving cars avoid many traffic accidents. Our evaluations using a recently released urban traffic dataset, namely ApolloScape showed that GRIP++ achieves better prediction accuracy than state-of-the-art schemes. GRIP++ ranked #1 on the leaderboard of the ApolloScape trajectory competition in October 2019. In addition, GRIP++ runs 21.7 times faster than a state-of-the-art scheme, CS-LSTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤朝雪完成签到,获得积分10
3秒前
小石头完成签到 ,获得积分10
4秒前
攒一口袋星星完成签到,获得积分10
5秒前
慕青应助动听半雪采纳,获得10
7秒前
8秒前
9秒前
wonder123应助加菲丰丰采纳,获得10
11秒前
YY完成签到 ,获得积分10
16秒前
16秒前
Wei完成签到 ,获得积分10
18秒前
科研通AI2S应助路过采纳,获得10
18秒前
pluto应助知了采纳,获得10
19秒前
21秒前
动听半雪发布了新的文献求助10
22秒前
传奇3应助丁莞采纳,获得10
28秒前
安静复天完成签到,获得积分10
29秒前
漂亮飞凤完成签到 ,获得积分20
30秒前
动听半雪完成签到,获得积分10
30秒前
30秒前
32秒前
DongWei95完成签到,获得积分10
33秒前
35秒前
39秒前
39秒前
40秒前
llmmnn完成签到,获得积分20
40秒前
w1完成签到,获得积分10
42秒前
图图发布了新的文献求助10
42秒前
丁莞发布了新的文献求助10
44秒前
44秒前
44秒前
50秒前
顾矜应助大气的以寒采纳,获得10
55秒前
57秒前
关添完成签到,获得积分10
59秒前
小二郎应助Tuan采纳,获得10
59秒前
大意的乐菱完成签到,获得积分10
59秒前
木木完成签到,获得积分10
1分钟前
录音机的基本原理完成签到,获得积分10
1分钟前
木木发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878