光催化
兴奋剂
材料科学
硫化
贵金属
原位
金属
可见光谱
光化学
纳米技术
电子转移
热液循环
化学工程
催化作用
化学
光电子学
冶金
有机化学
硫黄
工程类
作者
Yazhou Zhang,Jinwen Shi,Zhenxiong Huang,Xiangjiu Guan,Shichao Zong,Cheng Cheng,Botong Zheng,Liejin Guo
标识
DOI:10.1016/j.cej.2020.126135
摘要
Considering the fact of the cost control in photocatalysis, it is significant to develop the noble-metal-free photocatalysis for H2 evolution. Herein, CoS2 in-situ loading and S doping for g-C3N4 were synchronously constructed by hydrothermal and sulfidation processes. With systematical physicochemical characterizations, it was found that partial N atoms in g-C3N4 were replaced by S atoms, improving the visible-light absorption ability for more generation of photo-generated carriers. CoS2 as an effective noble-metal-free H2-evolution cocatalyst induced and captured photo-generated electrons for promoting separation of photo-generated carriers synergistically with S doping. More contact between CoS2 and g-C3N4 were formed by the in-situ growth of CoS2 nanosheets on the surface of g-C3N4 nanosheets. It was important that Co-S bonding between CoS2 and S-doped g-C3N4 was built by the synchronous construction of CoS2 in-situ loading and S doping, strengthening the directed transfer of photo-generated electrons from S-doped g-C3N4 to CoS2. Accordingly, the synergetic function of CoS2 in-situ loading and S doping effectively elevated the noble-metal-free photocatalytic activity of g-C3N4 for H2 evolution under visible-light irradiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI