亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Manifold learning algorithms for sensor fusion of image and radio-frequency data

人工智能 计算机科学 非线性降维 传感器融合 无线电频率 算法 歧管对齐 计算机视觉 降维 图像融合 图像(数学) 电信
作者
Dan Shen,Peter Zulch,Marcello Disasio,Erik Blasch,Genshe Chen,Zhonghai Wang,Jingyang Lu,Ruixin Niu
出处
期刊:IEEE Aerospace Conference 卷期号:: 1-9 被引量:14
标识
DOI:10.1109/aero.2018.8396395
摘要

This paper presents a joint manifold learning based heterogenous data fusion approach for image and radio frequency (RF) data. A typic scenario includes several objects (with RF emitters), which are observed by Medium Wavelength Infrared (MWIR) cameras and RF Doppler sensors. The sensor modalities of images and Doppler effects are analyzed in a way that joint manifolds can be formed by stacking up the image and Doppler data. The image data provide the aerial position and velocities of objects while the Doppler data represent the radial speeds of the objects. The proposed fusion approach exploits the manifold learning algorithms for fast and accurate sensor fusion solutions. The fusion framework has two phases: training and testing. In the training phase, the various manifold learning algorithms are applied to extract the intrinsic information via dimension reduction. Then, the raw manifold learning results (i.e., the dimension reduction results) are mapped to object trajectories of interest. The fusion results are compared with the ground truth data to evaluate the performance, based on which optimal manifold learning algorithm is selected. After the training phase, the manifold learning matrices and linear regression matrices are fixed. These matrices are used in the testing phase for multiple sensor data applications. Eight manifold learning algorithms are implemented and evaluated on Digital Imaging and Remote Sensing Image Generation (DIRSIG) scenes with MWIR data as well as distributed radiofrequency (RF) Doppler data from the same scene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
尔信完成签到 ,获得积分10
4秒前
22秒前
28秒前
奕奕发布了新的文献求助10
35秒前
sleepingfish应助白华苍松采纳,获得20
41秒前
48秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
xh完成签到 ,获得积分10
2分钟前
範範应助白华苍松采纳,获得20
3分钟前
jyy驳回了传奇3应助
3分钟前
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
彩虹儿应助舒适的访旋采纳,获得10
3分钟前
深情安青应助舒适的访旋采纳,获得10
3分钟前
3分钟前
4分钟前
可爱的函函应助lanxinyue采纳,获得10
4分钟前
yimoyafan发布了新的文献求助10
4分钟前
4分钟前
FashionBoy应助yimoyafan采纳,获得10
4分钟前
4分钟前
jyy发布了新的文献求助10
4分钟前
4分钟前
bkagyin应助yimoyafan采纳,获得10
4分钟前
jyy完成签到,获得积分10
4分钟前
StonesKing完成签到,获得积分20
5分钟前
5分钟前
上官若男应助StonesKing采纳,获得10
5分钟前
範範应助白华苍松采纳,获得20
5分钟前
Orange应助lanxinyue采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
情怀应助科研通管家采纳,获得150
5分钟前
科研通AI6应助阿里采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851873
求助须知:如何正确求助?哪些是违规求助? 4150328
关于积分的说明 12856874
捐赠科研通 3898496
什么是DOI,文献DOI怎么找? 2142460
邀请新用户注册赠送积分活动 1162226
关于科研通互助平台的介绍 1062486