异质结
材料科学
范德瓦尔斯力
石墨烯
单层
肖特基势垒
密度泛函理论
极化(电化学)
光电子学
凝聚态物理
纳米技术
化学
计算化学
物理
分子
物理化学
二极管
有机化学
作者
Qianjin Wang,Qiuhong Tan,Yingkai Liu,Chen Qing,Xiaobo Feng,Dapeng Yu
标识
DOI:10.1002/pssb.201900194
摘要
Van der Waals (vdW) heterostructures consisting of two‐dimensional‐layered nanomaterials have attracted great attention due to their promising applications in novel electronic and optoelectronic devices. Using density functional theory (DFT) with the vdW correlations (DFT‐D), the electronic properties and spontaneous polarization of graphene/monolayer GeS (G/MGeS) heterostructure have been investigated. It is found that the properties of both graphene and GeS are preserved in the vdW heterostructure, and the electronic structure of the heterostructure is advantageous for improving photocatalytic efficiency. Moreover, it is also found that the position of the band structure of GeS with respect to that of graphene can be tuned by altering the interlayer spacing, which further led to the control of the Schottky barrier height of the vdW heterostructures. Additionally, the vdW heterostructure shows increased spontaneous polarization (186.6 μC cm −2 ) as well as increased energy barrier heights, which indicate the enhanced ferroelectricity in the heterostructure. Further investigation demonstrates that the compressive strain can have a significant impact on both the spontaneous polarization and the energy barrier height of the vdW heterostructure.
科研通智能强力驱动
Strongly Powered by AbleSci AI