Robocentric visual–inertial odometry

里程计 计算机科学 可观测性 惯性参考系 稳健性(进化) 惯性测量装置 计算机视觉 视觉里程计 人工智能 单眼 机器人 数学 移动机器人 化学 物理 基因 量子力学 生物化学 应用数学
作者
Zheng Huai,Guoquan Huang
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:41 (7): 667-689 被引量:24
标识
DOI:10.1177/0278364919853361
摘要

In this paper, we propose a novel robocentric formulation of the visual–inertial navigation system (VINS) within a sliding-window filtering framework and design an efficient, lightweight, robocentric visual–inertial odometry (R-VIO) algorithm for consistent motion tracking even in challenging environments using only a monocular camera and a six-axis inertial measurement unit (IMU). The key idea is to deliberately reformulate the VINS with respect to a moving local frame, rather than a fixed global frame of reference as in the standard world-centric VINS, in order to obtain relative motion estimates of higher accuracy for updating global pose. As an immediate advantage of this robocentric formulation, the proposed R-VIO can start from an arbitrary pose, without the need to align the initial orientation with the global gravitational direction. More importantly, we analytically show that the linearized robocentric VINS does not undergo the observability mismatch issue as in the standard world-centric counterparts that has been identified in the literature as the main cause of estimation inconsistency. Furthermore, we investigate in depth the special motions that degrade the performance in the world-centric formulation and show that such degenerate cases can be easily compensated for by the proposed robocentric formulation, without resorting to additional sensors as in the world-centric formulation, thus leading to better robustness. The proposed R-VIO algorithm has been extensively validated through both Monte Carlo simulation and real-world experiments with different sensing platforms navigating in different environments, and shown to achieve better (or competitive at least) performance than the state-of-the-art VINS, in terms of consistency, accuracy, and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋芷完成签到,获得积分10
1秒前
WRWRWR发布了新的文献求助10
1秒前
2秒前
2秒前
英姑应助跳跃的问玉采纳,获得10
2秒前
糟糕的问儿完成签到,获得积分10
3秒前
脑洞疼应助优秀乐松采纳,获得10
4秒前
zrg完成签到,获得积分10
4秒前
4秒前
4秒前
疯狂的安波完成签到,获得积分10
5秒前
科研通AI5应助melody6156采纳,获得100
6秒前
6秒前
6秒前
7秒前
搜集达人应助slowride采纳,获得10
7秒前
7秒前
充电宝应助lulu采纳,获得10
7秒前
英姑应助冷傲海蓝采纳,获得10
8秒前
8秒前
研友_LOaaVZ完成签到,获得积分10
8秒前
9秒前
袁气小笼包完成签到,获得积分10
9秒前
Ain完成签到,获得积分10
9秒前
9秒前
桐桐应助找北ing采纳,获得10
10秒前
11秒前
CipherSage应助aac采纳,获得10
11秒前
11秒前
huiwanfeifei发布了新的文献求助10
12秒前
飘逸访文完成签到,获得积分10
12秒前
13秒前
13秒前
Ava应助xiongyh10采纳,获得30
14秒前
14秒前
fe999完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
Sumeru发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835634
求助须知:如何正确求助?哪些是违规求助? 3378015
关于积分的说明 10501548
捐赠科研通 3097632
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772245