电化学
功率密度
尿素
球磨机
材料科学
电池(电)
锂(药物)
锂电池
粒径
锂离子电池
化学工程
化学
电极
分析化学(期刊)
离子
复合材料
热力学
物理化学
功率(物理)
色谱法
有机化学
物理
离子键合
工程类
医学
内分泌学
作者
Pengfei Zhou,Junying Weng,Xiaolan Liu,Yanyan Li,Li Wang,Xiaozhong Wu,Tong Zhou,Jin Zhou,Shuping Zhuo
标识
DOI:10.1016/j.jpowsour.2019.01.007
摘要
To improve the electrochemical performance of CFx for lithium primary batteries, a ball milling treatment of CFx and urea with various mass ratios is carried out in this paper. It is shows that the weight ratio of urea/CFx significantly affects the electrochemical performance of the ball-milled CFx. Electrochemical tests show that the modified CFx material exhibits excellent electrochemical performance with much enhanced rate capacity, improved discharge platform, and lowered initial potential delay compared with the untreated CFx. In detail, when the weight ratio of urea/CFx is 5, the material delivers a discharge capacity of 550.6 mAh g−1 with a high power density of 10309 W kg−1 (at 5000 mA g−1 and 25 °C) and exhibits an excellent electrochemical stability at low temperature of 5 °C (power density up to 5922.5 W kg−1 at 3000 mA g−1). The outstanding electrochemical performance is mainly due to the synergistic effect of enlarged interlayer distance, decreased particle size, and increased surface area, which resulting in improved the electrochemical reaction activity, decreased reaction resistance, and facilitated lithium ions diffusion.
科研通智能强力驱动
Strongly Powered by AbleSci AI