Novel hierarchically porous Ti-MOFs/nitrogen-doped graphene nanocomposite served as high efficient oxygen reduction reaction catalyst for fuel cells application

石墨烯 纳米复合材料 氧还原反应 催化作用 材料科学 化学工程 燃料电池 多孔性 氧还原 兴奋剂 氧气 氮气 纳米技术 电化学 化学 电极 复合材料 有机化学 物理化学 工程类 光电子学
作者
Xiulan Qin,Shuai Zhang,Ke Wang,Tingting Xu,Yanli Wang,Panbo Liu,Yuan Kang,Yang Zhang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:297: 805-813 被引量:46
标识
DOI:10.1016/j.electacta.2018.12.045
摘要

Abstract Novel hierarchically porous titanium-metal organic frameworks/nitrogen-doped graphene (Ti-MOFs/NG) nanocomposite derived from titanium-metal organic frameworks (Ti-MOFs) and the nitrogen-doped graphene (NG) has been originally synthesized successfully. Notably, the Ti-MOFs/NG nanocomposite has been for the first time investigated in detail, as oxygen reduction reaction (ORR) catalyst of cathodic materials for fuel cells. The results show that the Ti-MOFs/NG nanocomposite possesses excellent ORR performances, whether in alkaline or acidic medium, due to existences of the Ti3N2-x, C2O7Ti2.3, H2Ti5O11, Ti and TiO active ORR segments. Specifically, the onset potential (E0) and the Tafel slope value of the Ti-MOFs/NG nanocomposite are 1.14 V and 17.84 mV dec−1 in 0.1 M HClO4, respectively. Similarly, high ORR efficiency of the Ti-MOFs/NG nanocomposite also exhibit in alkaline medium. The relative current density can still keep 99.88% of the original value after 10800 s measurements in 0.1 M KOH. Additionally, small electrochemical impedance and excellent tolerance toward fuel molecules have been exhibited in both electrolytes. These ORR properties are superior to those of most of previously reported materials derived from other MOFs, in both alkaline and acidic media. Thus, the Ti-MOFs/NG nanocomposite is as a novel promising candidate for ORR catalyst to solve the main problems of sluggish reaction kinetics of the ORR, high cost of precious metal catalysts and low durability of the traditional catalysts, applied to fuel cells, metal-air batteries and further to water splitting in energy conversion and storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
哎呀妈呀发布了新的文献求助10
2秒前
3秒前
李爱国应助Tong采纳,获得10
3秒前
xiaoxia发布了新的文献求助10
4秒前
祈雨发布了新的文献求助10
5秒前
5秒前
李sir发布了新的文献求助10
6秒前
大模型应助卫什么采纳,获得10
7秒前
无私的一刀完成签到,获得积分10
8秒前
9秒前
飘逸的小土豆完成签到 ,获得积分10
9秒前
大个应助危机的麦片采纳,获得10
10秒前
12秒前
12秒前
小马甲应助阿芝采纳,获得10
13秒前
14秒前
15秒前
16秒前
JamesPei应助KingYugene采纳,获得10
17秒前
18秒前
调皮书本发布了新的文献求助10
20秒前
20秒前
绵绵发布了新的文献求助10
20秒前
zwl1996完成签到 ,获得积分10
21秒前
sars518应助zzz采纳,获得20
22秒前
22秒前
23秒前
Mike001发布了新的文献求助10
23秒前
小关发布了新的文献求助10
23秒前
上山完成签到,获得积分10
23秒前
ZY完成签到 ,获得积分10
23秒前
23秒前
Mike001发布了新的文献求助10
25秒前
25秒前
奋斗凝蝶完成签到,获得积分10
25秒前
勤劳绿毛龟完成签到,获得积分10
25秒前
25秒前
25秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2411118
求助须知:如何正确求助?哪些是违规求助? 2106243
关于积分的说明 5322109
捐赠科研通 1833701
什么是DOI,文献DOI怎么找? 913739
版权声明 560856
科研通“疑难数据库(出版商)”最低求助积分说明 488579