数学
素数(序理论)
学位(音乐)
组合数学
巧合
直线(几何图形)
边界(拓扑)
数学分析
物理
几何学
声学
医学
病理
替代医学
作者
S. Djafri,Toufik Moussaoui
标识
DOI:10.1515/apam-2018-0087
摘要
Abstract In this paper, we are interested in the study of the existence of positive solutions for the following nonlinear boundary value problem on the half-line: \left\{\begin{aligned} \displaystyle-u^{\prime\prime}(x)&\displaystyle=q(x)f(x% ,u,u^{\prime}),&&\displaystyle x\in(0,+\infty),\\ \displaystyle u^{\prime}(0)&\displaystyle=u^{\prime}(+\infty)=0,\end{aligned}\right. where {q:\mathbb{R^{+}}\rightarrow\mathbb{R^{+}}} is a positive measurable function such that {\int_{0}^{+\infty}q(x)\,dx=1} and {f:\mathbb{R}^{+}\times\mathbb{R}^{2}\rightarrow\mathbb{R}} is q -Carathéodory.
科研通智能强力驱动
Strongly Powered by AbleSci AI