Segmentation of the uterine wall by an ensemble of fully convolutional neural networks

分割 卷积神经网络 人工智能 计算机科学 可观测性 模式识别(心理学) 图像分割 数学 应用数学
作者
Péter Burai,András Hajdú,Felipe-Riveron Edgardo Manuel,Balázs Harangi
标识
DOI:10.1109/embc.2018.8512245
摘要

In the past decades, the number of in vitro fertilization (IVF) procedures for the conception of a child has been rising continuously, however, the success rate of artificial insemination remained low. According to current statistics, large portion of unsuccessful IVF relates to some women' factors. As the directly related female organ, the proper investigation of the uterus has primary importance. Namely, visible markers may indicate inflammations or other negative effects that jeopardize successful implantation. The purpose of this study is to support the observability of the uterus from this aspect by providing computer-aided tools for the extraction of its wall from video hysteroscopy. As for methodology, fully convolutional neural networks (FCNNs) are used for the automatic segmentation of the video frames to determine the region of interest. We provide the necessary steps for the applicability of the general deep learning framework for this specific task. Moreover, we increase segmentation accuracy with applying ensemble-based approaches at two levels. First, the predictions of a given FCNN are aggregated for the overlapping regions of subimages, which are derived from the splitting of the original images. Next, the segmentation results of different FCNNs are fused via a weighted combination model; optimization for adjusting the weights are also provided. Based on our experimental results, we have achieved 91.56% segmentation accuracy regarding the recognition of the uterus wall.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
askd不渡神明完成签到,获得积分10
2秒前
亭2007完成签到 ,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得50
5秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
哈哈姐应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Elaine20应助科研通管家采纳,获得10
6秒前
包容的若风完成签到,获得积分10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
ZJB应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
初见发布了新的文献求助10
7秒前
mrjohn完成签到,获得积分10
8秒前
人间枝头完成签到,获得积分10
8秒前
情怀应助andy采纳,获得10
8秒前
10秒前
田様应助weijiechi采纳,获得10
11秒前
丘比特应助何事惊慌采纳,获得10
12秒前
13秒前
义气的元柏完成签到 ,获得积分10
13秒前
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4087690
求助须知:如何正确求助?哪些是违规求助? 3626610
关于积分的说明 11499632
捐赠科研通 3339492
什么是DOI,文献DOI怎么找? 1835983
邀请新用户注册赠送积分活动 904153
科研通“疑难数据库(出版商)”最低求助积分说明 822056