DeCoach: Deep Learning-based Coaching for Badminton Player Assessment

计算机科学 指导 人工智能 深度学习 人机交互 心理学 心理治疗师
作者
Indrajeet Ghosh,Sreenivasan Ramasamy Ramamurthy,Avijoy Chakma,Nirmalya Roy
出处
期刊:Pervasive and Mobile Computing [Elsevier BV]
卷期号:83: 101608-101608 被引量:19
标识
DOI:10.1016/j.pmcj.2022.101608
摘要

Wearable devices have gained immense popularity among various pervasive computing and Internet-of-Things (IoT) applications in the past decade. Sports analytics researchers recently focused on improving a player's performance to help devise a winning strategy based on the player's gameplay. Especially in a racquet-based badminton sport, it is assumed that handling the racquet during the gameplay is one of the primary reasons to influence the players' performance. On the contrary, we posit that the players' stance, body movements, and posture are equally significant in evaluating a player's performance during the game. A shot characterized by a recommended posture, stance, and body movements allows a player to play a stroke efficiently, thus aiding the player in guiding the shuttle to strategic spots and making it difficult for the opponent to return the shot and score a point. Relying on this hypothesis, we propose DeCoach, a data-driven framework that leverages the stance and posture of the players and ranks them based on their performances. In this effort, we first employ a deep learning-based algorithm to classify the strokes and stances of the players. Secondly, we propose a distance-based methodology to compare the obtained stance of a player with that of a professional player. Finally, we devise a deep learning-based regressor to predict the player's performance which commences with ranking based on their performance. We evaluate DeCoach using our in-house dataset, Badminton Activity Recognition (BAR) Dataset that is collected using inertial measurement unit (IMU) sensors by placing them on the upper and lower limbs of the players. The BAR dataset is collected from 11 players in the controlled and uncontrolled environment settings for 12 frequently played shots in the game. Empirical results indicate that DeCoach achieves 89.09% accuracy for strokes detection and R2 score of 88.84% in estimating the players' performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
zdy发布了新的文献求助10
9秒前
程风破浪发布了新的文献求助10
11秒前
13秒前
lyj发布了新的文献求助10
13秒前
赘婿应助绿色心情采纳,获得10
13秒前
jenningseastera应助无奈天亦采纳,获得10
15秒前
Heidi完成签到,获得积分10
16秒前
18秒前
舒服的鱼完成签到 ,获得积分10
20秒前
华仔应助怡然的怀莲采纳,获得10
21秒前
lyj完成签到,获得积分10
22秒前
雷锋完成签到,获得积分10
26秒前
27秒前
无奈天亦完成签到,获得积分10
31秒前
songjing发布了新的文献求助10
31秒前
紫薯完成签到 ,获得积分10
34秒前
深情安青应助程风破浪采纳,获得10
35秒前
红油曲奇完成签到 ,获得积分10
36秒前
宋德宇完成签到,获得积分20
36秒前
Linda完成签到 ,获得积分10
37秒前
汉堡包应助Sunday采纳,获得10
40秒前
hh完成签到 ,获得积分10
43秒前
111完成签到 ,获得积分10
44秒前
jj完成签到,获得积分10
48秒前
LL完成签到,获得积分10
50秒前
54秒前
NexusExplorer应助asdwe172009采纳,获得50
55秒前
甜甜纲手完成签到,获得积分10
56秒前
59秒前
fu19921016完成签到 ,获得积分10
1分钟前
顺心靖雁完成签到,获得积分10
1分钟前
蓝风铃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
乐观的莆完成签到,获得积分10
1分钟前
木云浅夏发布了新的文献求助10
1分钟前
康康完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549