Machine learning techniques for estimating seismic site amplification in the Santiago basin, Chile

构造盆地 地震学 地质学 地理 考古 地貌学
作者
Jennifer Diaz,Estéban Sáez,Mauricio Monsalve,Gabriel Candia,Felipe Aron,G. González
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:306: 106764-106764 被引量:8
标识
DOI:10.1016/j.enggeo.2022.106764
摘要

Seismic site amplification and seismic hazard maps are crucial inputs for decision making and risk evaluation in places where seismicity imposes a significant risk to human life and infrastructure. In this work, we propose a novel machine learning (ML) based methodology to integrate qualitative and quantitative data to map the degree of seismic amplification in an area of Chile, one of the most seismically active countries on Earth. Our method uses measurements of surface shear wave velocities (V s30 ) and predominant frequencies (f 0 ) combined with gravity anomaly maps to update the geographic extension of seismic amplification classes. Additionally, we trained the predictive models to interpolate and extrapolate V s30 and f 0 to the unsampled sites. Applying this method to the Santiago basin resulted in (i) a refined seismic amplification map, and (ii) maps of V s30 and f 0 estimated with improved accuracy. The best predictions, obtained by ML techniques and validated through cross-validation, are possibly due to the inclusion of spatial covariates for algorithm training, enhancing the ability of the model to capture the spatial correlations of geological, geophysical and geotechnical data. The estimation of predominant frequencies (f 0 ) is improved considerably by including gravity as a covariant. The accuracy of the f 0 predictions apparently depends more on the choice of covariates than on the algorithm used, while the V s30 predictions are more sensitive to the chosen algorithm. These results illustrate the great potential of machine learning predictive algorithms in digital soil mapping, which surpass traditional geostatistical techniques. The major contribution of this work is to introduce a novel methodology, based on artificial intelligence models, to extend local measurements of site-specific dynamic properties. This information can be used to quantitatively estimate seismic hazard over a regional scale. • We propose a methodology for integrating data to map dynamic site characterization using machine learning. • Our method uses measurements of Vs30 and f0 combined with gravity anomaly and geology. • We trained predictive models to interpolate Vs30 and f0 in the Santiago de Chile basin. • The best predictions were obtained thanks the inclusion of spatial covariates for algorithm training. • The estimation of f0 is considerably improved by including gravity as a covariant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟雯完成签到 ,获得积分10
1秒前
laura完成签到,获得积分10
2秒前
zz完成签到,获得积分10
2秒前
wsh完成签到,获得积分10
2秒前
nannan发布了新的文献求助10
3秒前
3秒前
4秒前
通义千问发布了新的文献求助10
4秒前
sobergod发布了新的文献求助10
4秒前
5秒前
wsh发布了新的文献求助10
6秒前
TINATINA完成签到,获得积分10
6秒前
洋洋完成签到 ,获得积分10
6秒前
柴yuki完成签到 ,获得积分10
7秒前
joysa完成签到,获得积分10
9秒前
bc应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
nannan完成签到,获得积分10
12秒前
15秒前
15秒前
Mayeleven发布了新的文献求助10
15秒前
深情安青应助亮仔采纳,获得10
16秒前
lkm完成签到,获得积分10
16秒前
七里香完成签到 ,获得积分10
16秒前
19秒前
简单的沛蓝完成签到 ,获得积分10
19秒前
开心的城完成签到,获得积分10
20秒前
xiangtaiduo发布了新的文献求助10
21秒前
22秒前
rita_sun1969完成签到,获得积分10
24秒前
文献完成签到,获得积分10
26秒前
Orange应助等等采纳,获得10
26秒前
iris601完成签到,获得积分10
27秒前
白子双完成签到,获得积分10
27秒前
Selenge发布了新的文献求助10
27秒前
格物致知完成签到,获得积分10
27秒前
十八子完成签到,获得积分10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780938
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227091
捐赠科研通 3041639
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734