Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

光催化 均方误差 计算机科学 机器学习 过硫酸盐 阿达布思 随机森林 算法 环境科学 人工智能 数学 化学 统计 支持向量机 催化作用 生物化学
作者
Amir Hossein Navidpour,Ahmad Hosseinzadeh,Zhenguo Huang,Donghao Li,John L. Zhou
出处
期刊:Catalysis Reviews-science and Engineering [Taylor & Francis]
卷期号:66 (2): 687-712 被引量:39
标识
DOI:10.1080/01614940.2022.2082650
摘要

Perfluorooctanoic acid (PFOA) is used in a variety of industries and is highly persistent in the environment, with potential human health risks. Photocatalysis has been extensively used for the decomposition of various organic pollutants, yet its simulation and modeling are challenging. This research aimed to establish different machine learning (ML) algorithms which can simulate and predict the photocatalytic degradation of PFOA. The published results were used to estimate and predict the photocatalytic degradation of PFOA. Statistical criteria including the coefficient of determination (R2), mean absolute error (MAE), and mean squared error (MSE) were considered in assessing the best method of modeling. Among the seven ML algorithms pre-screened, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Random Forest (RF) showed the best performance and were chosen for deep modeling and analysis. Grid search was used to optimize the models developed by AdaBoost, GBM, and RF; and permutation variable importance (PVI) was used to analyze the relative importance of different variables. Based on the modeling results, GBM model (R2 = 0.878, MSE = 106.660, MAE = 6.009) and RF model (R2 = 0.867, MSE = 107.500, MAE = 6.796) showed superior performances compared with AdaBoost model (R2 = 0.574, MSE = 388.369, MAE = 16.480). Furthermore, the PVI results suggested that the GBM model provided the best outcome, with the light irradiation time, type of catalyst, dosage of catalyst, solution pH, irradiation intensity, initial PFOA concentration, oxidizing agents (peroxymonosulfate, ammonium persulfate, and sodium persulfate), irradiation wavelength, and solution temperature as the most important process variables in decreasing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王小磊完成签到,获得积分10
2秒前
2秒前
2秒前
慕青应助闪闪绮露采纳,获得10
3秒前
3秒前
???完成签到,获得积分10
4秒前
4秒前
5秒前
Mr.w完成签到,获得积分10
5秒前
体贴的采蓝完成签到 ,获得积分20
5秒前
西装大气完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
游魂关注了科研通微信公众号
7秒前
7秒前
解师发布了新的文献求助10
8秒前
Three完成签到,获得积分10
8秒前
潇洒发夹完成签到,获得积分10
8秒前
shilang完成签到,获得积分10
8秒前
领导范儿应助YAYA采纳,获得20
8秒前
yaoyao发布了新的文献求助10
8秒前
轻松冬瓜完成签到,获得积分10
8秒前
英俊的铭应助噜噜噜采纳,获得10
9秒前
学不明白发布了新的文献求助10
9秒前
9秒前
axin完成签到,获得积分10
9秒前
10秒前
小田同学完成签到,获得积分10
10秒前
调皮书本发布了新的文献求助20
10秒前
10秒前
Vera发布了新的文献求助10
11秒前
共享精神应助aaawen采纳,获得10
11秒前
长乐发布了新的文献求助10
11秒前
11秒前
11秒前
旧辞发布了新的文献求助10
12秒前
小丸子发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790371
求助须知:如何正确求助?哪些是违规求助? 3335077
关于积分的说明 10273337
捐赠科研通 3051539
什么是DOI,文献DOI怎么找? 1674723
邀请新用户注册赠送积分活动 802757
科研通“疑难数据库(出版商)”最低求助积分说明 760853