亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting exercise electrocardiography to improve early diagnosis of atrial fibrillation with deep learning neural networks

心房颤动 心脏病学 心电图 内科学 医学 卷积神经网络 深度学习 心肌病 心力衰竭 心脏病 人工智能 计算机科学
作者
Hsiang‐Chun Lee,Chun-Yen Chen,Shie-Jue Lee,Ming-Chuan Lee,Ching‐Yi Tsai,Su-Te Chen,Yu-Ju Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105584-105584 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.105584
摘要

Atrial fibrillation (AF) is the most common type of sustained arrhythmia. It results from abnormal irregularities in the electrical performance of the atria, and may cause heart thrombosis, stroke, arterial disease, thromboembolism, and heart failure. Prior to the onset of atrial fibrillation, most people experience atrial cardiomyopathy which, if effectively managed, can be prevented from progressing to atrial fibrillation. Electrocardiogram (ECG) can show changes in the heartbeats, and is a common and painless tool to detect heart problems. P-waves in exercise ECGs change more drastically than those in regular ECG, and are more effective in the detection of atrial myocardial diseases. In this paper, we propose a deep learning system to help clinicians to early detect if a patient has atrial enlargement or fibrillation. Firstly, a Convolutional Recurrent Neural Network is employed to locate the P-waves in the patient's exercise ECGs taken in the exercise ECG test process. Relevant parameters are then calculated from the located P-waves. Then a Parallel Bi-directional Long Short-Term Memory Network is applied to analyze the obtained parameters and make a diagnosis for the patient. With our proposed deep learning system, the changes of P-waves collected in different phases in the exercise ECG test can be analyzed simultaneously to get more stable and accurate results. The system can take data of different length as input, and is also applicable to any number of ECG collections. We conduct various experiments to show the effectiveness of our proposed system. We also show that the more ECG data collected in the exercise phase are involved, the more effective our system is in diagnosis of the diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songjinyan829发布了新的文献求助10
3秒前
terryok完成签到,获得积分10
4秒前
10秒前
12秒前
艾七七发布了新的文献求助10
15秒前
16秒前
songjinyan829完成签到,获得积分10
17秒前
艾七七完成签到,获得积分10
25秒前
26秒前
maher给maher的求助进行了留言
48秒前
甜蜜乐松完成签到,获得积分10
1分钟前
李爱国应助甜蜜乐松采纳,获得10
1分钟前
mary完成签到 ,获得积分10
1分钟前
1分钟前
清修发布了新的文献求助10
1分钟前
SH123完成签到 ,获得积分10
1分钟前
小卒发布了新的文献求助10
2分钟前
Jj7发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
和谐的烙发布了新的文献求助10
2分钟前
热情金针菇完成签到,获得积分10
2分钟前
Alicia完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Ava应助伊可创采纳,获得30
2分钟前
JACK发布了新的文献求助10
2分钟前
Hello应助和谐的烙采纳,获得10
3分钟前
乐乐应助机灵白桃采纳,获得10
3分钟前
小白应助蜡笔小z采纳,获得30
3分钟前
ccccc完成签到,获得积分20
3分钟前
和谐的烙完成签到,获得积分10
3分钟前
123完成签到,获得积分10
3分钟前
烟花应助贪玩的一曲采纳,获得30
3分钟前
星辰大海应助Carrido采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244117
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800562
科研通“疑难数据库(出版商)”最低求助积分说明 759483