亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cell type-specific inference of differential expression in spatial transcriptomics

电池类型 背景(考古学) 计算生物学 推论 基因表达 转录组 生物 细胞 基因表达谱 基因 计算机科学 人工智能 遗传学 古生物学
作者
Dylan Cable,Evan Murray,Vignesh Shanmugam,Simon Zhang,Michael Diao,Haiqi Chen,Evan Z. Macosko,Rafael A. Irizarry,Fei Chen
标识
DOI:10.1101/2021.12.26.474183
摘要

Abstract Spatial transcriptomics enables spatially resolved gene expression measurements at near single-cell resolution. There is a pressing need for computational tools to enable the detection of genes that are differentially expressed (DE) within specific cell types across tissue context. We show that current approaches cannot learn cell type-specific DE due to changes in cell type composition across space and the fact that measurement units often detect transcripts from more than one cell type. Here, we introduce a statistical method, Cell type-Specific Inference of Differential Expression (C-SIDE), that identifies cell type-specific patterns of differential gene expression while accounting for localization of other cell types. We model spatial transcriptomics gene expression as an additive mixture across cell types of general log-linear cell type-specific expression functions. This approach provides a unified framework for defining and identifying gene expression changes in a wide-range of relevant contexts: changes due to pathology, anatomical regions, physical proximity to specific cell types, and cellular microenvironment. Furthermore, our approach enables statistical inference across multiple samples and replicates when such data is available. We demonstrate, through simulations and validation experiments on Slide-seq and MER-FISH datasets, that our approach accurately identifies cell type-specific differential gene expression and provides valid uncertainty quantification. Lastly, we apply our method to characterize spatially-localized tissue changes in the context of disease. In an Alzheimer’s mouse model Slide-seq dataset, we identify plaque-dependent patterns of cellular immune activity. We also find a putative interaction between tumor cells and myeloid immune cells in a Slide-seq tumor dataset. We make our C-SIDE method publicly available as part of the open source R package https://github.com/dmcable/spacexr .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mathmotive完成签到,获得积分10
5秒前
可爱的函函应助yyy采纳,获得10
20秒前
28秒前
yyy发布了新的文献求助10
32秒前
HH1202完成签到 ,获得积分10
33秒前
58秒前
jiaobu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ding应助jiaobu采纳,获得30
2分钟前
发发发发发完成签到,获得积分20
2分钟前
2分钟前
Dou发布了新的文献求助10
2分钟前
2分钟前
草木发布了新的文献求助10
2分钟前
walid56i完成签到,获得积分10
2分钟前
Dou完成签到,获得积分10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Vivian完成签到 ,获得积分10
3分钟前
一剑温柔完成签到 ,获得积分10
3分钟前
3分钟前
柔弱友菱发布了新的文献求助30
3分钟前
行李早已收拾好丶完成签到,获得积分10
3分钟前
SciGPT应助柔弱友菱采纳,获得10
4分钟前
zzhui完成签到,获得积分10
4分钟前
yyy发布了新的文献求助10
4分钟前
116完成签到,获得积分10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
NexusExplorer应助JY采纳,获得10
5分钟前
后陡门的夏天完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
JY发布了新的文献求助10
5分钟前
喜羊羊完成签到,获得积分10
6分钟前
wanci应助Tiger采纳,获得10
6分钟前
大个应助科研通管家采纳,获得10
7分钟前
Jasper应助科研通管家采纳,获得10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762563