Spatial-Temporal Cellular Traffic Prediction for 5G and Beyond: A Graph Neural Networks-Based Approach

计算机科学 蜂窝网络 杠杆(统计) 网络流量模拟 蜂窝通信量 交通生成模型 分布式计算 数据挖掘 人工智能 计算机网络 网络流量控制 网络数据包
作者
Zi Wang,Jia Hu,Geyong Min,Zhiwei Zhao,Zheng Chang,Zhe Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 5722-5731 被引量:38
标识
DOI:10.1109/tii.2022.3182768
摘要

During the past decade, Industry 4.0 has greatly promoted the improvement of industrial productivity by introducing advanced communication and network technologies in the manufacturing process. With the continuous emergence of new communication technologies and networking facilities, especially the rapid evolution of cellular networks for 5G and beyond, the requirements for smarter, more reliable, and more efficient cellular network services have been raised from the Industry 5.0 blueprint. To meet these increasingly challenging requirements, proactive and effective allocation of cellular network resources becomes essential. As an integral part of the cellular network resource management system, cellular traffic prediction faces severe challenges with stringent requirements for accuracy and reliability. One of the most critical problems is how to improve the prediction performance by jointly exploring the spatial and temporal information within the cellular traffic data. A promising solution to this problem is provided by graph neural networks (GNNs), which can jointly leverage the cellular traffic in the temporal domain and the physical or logical topology of cellular networks in the spatial domain to make accurate predictions. In this article, we present the spatial-temporal analysis of a real-world cellular network traffic dataset and review the state-of-the-art research works in this field. Based on this, we further propose a time-series similarity-based graph attention network, TSGAN, for the spatial-temporal cellular traffic prediction. The simulation results show that our proposed TSGAN outperforms three classic prediction models based on GNNs or GRU on a real-world cellular network dataset in short-term, mid-term, and long-term prediction scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XZY发布了新的文献求助10
2秒前
阎雨雪完成签到,获得积分10
2秒前
cherish3232完成签到 ,获得积分10
4秒前
搜集达人应助77采纳,获得10
4秒前
qsy关闭了qsy文献求助
4秒前
别绪叁仟发布了新的文献求助10
5秒前
sung发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
我是老大应助堡主采纳,获得10
7秒前
8秒前
科研通AI2S应助勤奋的醉山采纳,获得10
8秒前
holycale完成签到,获得积分10
9秒前
zwb完成签到 ,获得积分10
9秒前
CipherSage应助从心从心采纳,获得10
10秒前
10秒前
YY完成签到 ,获得积分20
10秒前
12秒前
ABCDE完成签到,获得积分10
12秒前
13秒前
sung完成签到,获得积分10
14秒前
田様应助光头强采纳,获得10
15秒前
15秒前
害羞惊蛰完成签到,获得积分20
15秒前
慕无忌发布了新的文献求助10
15秒前
16秒前
秋沧海发布了新的文献求助20
16秒前
陶醉山灵发布了新的文献求助10
17秒前
17秒前
17秒前
所所应助丰都麻辣鸡采纳,获得10
17秒前
orixero应助黑马王子采纳,获得10
18秒前
18秒前
YXHTCM发布了新的文献求助10
19秒前
mfy0068发布了新的文献求助10
19秒前
Lucas应助慕无忌采纳,获得10
20秒前
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535968
求助须知:如何正确求助?哪些是违规求助? 4623760
关于积分的说明 14588969
捐赠科研通 4564340
什么是DOI,文献DOI怎么找? 2501618
邀请新用户注册赠送积分活动 1480473
关于科研通互助平台的介绍 1451779