Crystal Structure Prediction via Efficient Sampling of the Potential Energy Surface

计算机科学 任务(项目管理) 化学空间 管理科学 计算模型 数据科学 主题(计算) 纳米技术 表征(材料科学) 钥匙(锁) 生化工程 系统工程 人工智能 化学 工程类 药物发现 材料科学 操作系统 生物化学 计算机安全
作者
Yanchao Wang,Jian Lv,Pengyue Gao,Yanming Ma
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (15): 2068-2076 被引量:50
标识
DOI:10.1021/acs.accounts.2c00243
摘要

ConspectusThe crystal structure prediction (CSP) has emerged in recent years as a major theme in research across many scientific disciplines in physics, chemistry, materials science, and geoscience, among others. The central task here is to find the global energy minimum on the potential energy surface (PES) associated with the vast structural configuration space of pertinent crystals of interest, which presents a formidable challenge to efficient and reliable computational implementation. Considerable progress in recent CSP algorithm developments has led to many methodological advances along with successful applications, ushering in a new paradigm where computational research plays a leading predictive role in finding novel material forms and properties which, in turn, offer key insights to guide experimental synthesis and characterization. In this Account, we first present a concise summary of major advances in various CSP methods, with an emphasis on the overarching fundamentals for the exploration of the PES and its impact on CSP. We then take our developed CALYPSO method as an exemplary case study to give a focused overview of the current status of the most prominent issues in CSP methodology. We also provide an overview of the basic theory and main features of CALYPSO and emphasize several effective strategies in the CALYPSO methodology to achieve a good balance between exploration and exploitation. We showcase two exemplary cases of the theory-driven discovery of high-temperature superconducting superhydrides and a select group of atypical compounds, where CSP plays a significant role in guiding experimental synthesis toward the discovery of new materials. We finally conclude by offering perspectives on major outstanding issues and promising opportunities for further CSP research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助Sygganggang采纳,获得10
1秒前
DTS发布了新的文献求助10
1秒前
Alanni完成签到 ,获得积分10
2秒前
returno_0发布了新的文献求助10
2秒前
11111完成签到,获得积分10
2秒前
香蕉觅云应助三跳采纳,获得10
3秒前
feng发布了新的文献求助10
4秒前
烩儿完成签到 ,获得积分10
4秒前
5秒前
无名发布了新的文献求助10
6秒前
cai完成签到,获得积分10
6秒前
eason应助Du采纳,获得10
7秒前
duang完成签到,获得积分20
10秒前
11秒前
潘果果完成签到,获得积分10
11秒前
heyouxian发布了新的文献求助30
11秒前
12秒前
2024120310完成签到,获得积分20
13秒前
bingbing发布了新的文献求助10
14秒前
海洋完成签到,获得积分20
16秒前
伶俐如冰发布了新的文献求助10
16秒前
小马过河发布了新的文献求助10
17秒前
18秒前
ludong_0完成签到,获得积分10
19秒前
英俊白莲发布了新的文献求助10
19秒前
积极从蕾应助bingbing采纳,获得10
19秒前
所所应助bingbing采纳,获得10
19秒前
SciGPT应助搞怪的谷蕊采纳,获得10
19秒前
20秒前
小青应助文件撤销了驳回
21秒前
Super枫应助无名采纳,获得10
21秒前
22秒前
秋秋发布了新的文献求助30
22秒前
遇简完成签到,获得积分10
23秒前
My发布了新的文献求助10
23秒前
可爱的函函应助xixidong采纳,获得10
23秒前
Wzwww完成签到 ,获得积分10
24秒前
yuanqi完成签到,获得积分10
25秒前
你好灰太狼完成签到,获得积分10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4127210
求助须知:如何正确求助?哪些是违规求助? 3664711
关于积分的说明 11595305
捐赠科研通 3363846
什么是DOI,文献DOI怎么找? 1848520
邀请新用户注册赠送积分活动 912411
科研通“疑难数据库(出版商)”最低求助积分说明 828020