Assessment oil composition and species discrimination of Brassicas seeds based on hyperspectral imaging and portable near infrared (NIR) spectroscopy tools and chemometrics

化学计量学 偏最小二乘回归 高光谱成像 近红外光谱 芥酸 主成分分析 线性判别分析 食物成分数据 化学 食品科学 数学 人工智能 色谱法 计算机科学 统计 油菜籽 生物 神经科学 橙色(颜色)
作者
Maria Lucimar da Silva Medeiros,J.P. Cruz‐Tirado,Adriano Freitas Lima,José Marcelino de Souza Netto,Ana Paula Badan Ribeiro,Doglas Bassegio,Helena Teixeira Godoy,Douglas Fernandes Barbin
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:107: 104403-104403 被引量:69
标识
DOI:10.1016/j.jfca.2022.104403
摘要

Brassica is a genus of oilseed plants mainly used to produce edible oils, modified lipids, industrial oils, and biofuels. Oil and fatty acid content are the main chemical indicators for Brassicas seed quality (e.g. low content of erucic acid indicate seeds appropriate for food industry, while high contents indicate are suitable in the cosmetic, pharmaceutical and fuel industry). The goal of this work was to implement and compare the portable Near Infrared spectroscopy (NIRS) and NIR-Hyperspectral Imaging (NIR-HSI) based analytical methods to quantify oil content and fatty acid and classify seeds species. Spectral data was analyzed by non-supervised (principal component analysis, PCA) and supervised (partial least square regression, PLSR, and discriminant analysis, PLS-DA) chemometrics tools in order to generate new prediction models. PLS-DA analysis showed satisfactory discrimination between Brassicas species, with correct classification rate of 94.9 and 100 % for portable NIR spectrometer and NIR-HSI devices, respectively, in external validation. The best prediction models were obtained based on interval selection (iPLS) for erucic acid, MUFAs and PUFAs using NIR-HSI spectra. Although these NIR-HSI models have better results than the NIR spectrometer, both the NIR and NIR-HSI devices could be adapted to quantify the oil content and composition in Brassica seeds, according to the needs of the industry or the consumer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
结实的山菡应助Tiger采纳,获得10
1秒前
李宝刚发布了新的文献求助30
2秒前
yi完成签到,获得积分10
5秒前
咩咩羊发布了新的文献求助10
6秒前
顺心初蓝发布了新的文献求助10
7秒前
爱吃火锅的lulu完成签到 ,获得积分10
8秒前
9秒前
yuyuyuan发布了新的文献求助10
12秒前
心神依然发布了新的文献求助10
15秒前
李宝刚完成签到,获得积分10
17秒前
狗咚嘻完成签到,获得积分10
19秒前
a9902002完成签到 ,获得积分10
19秒前
笑点低的飞扬完成签到 ,获得积分10
21秒前
25秒前
25秒前
慢慢的地理人完成签到,获得积分10
26秒前
26秒前
Logan完成签到,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
ding应助科研通管家采纳,获得10
27秒前
Akim应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
27秒前
28秒前
33ovo完成签到 ,获得积分10
28秒前
王木木发布了新的文献求助10
30秒前
小钉子发布了新的文献求助10
30秒前
31秒前
李爱国应助顺心初蓝采纳,获得10
32秒前
forest完成签到,获得积分10
33秒前
gkk发布了新的文献求助20
34秒前
Cherish完成签到,获得积分10
36秒前
37秒前
默默咖啡豆完成签到,获得积分10
39秒前
40秒前
40秒前
张张发布了新的文献求助10
44秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757