DHI-GAN: Improving Dental-Based Human Identification Using Generative Adversarial Networks

判别式 分类器(UML) 计算机科学 机器学习 人工智能 嵌入 生成语法 模式识别(心理学) 生成对抗网络 数据挖掘 深度学习
作者
Yi Lin,Fan Fei,Jianwei Zhang,Jizhe Zhou,Peixi Liao,Hu Chen,Zhenhua Deng,Yi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 9700-9712 被引量:5
标识
DOI:10.1109/tnnls.2022.3159781
摘要

In this work, a novel semisupervised framework is proposed to tackle the small-sample problem of dental-based human identification (DHI), achieving enhanced performance via a "classifying while generating" paradigm. A generative adversarial network (GAN), called the DHI-GAN, is presented to implement this idea, in which an extra classifier is also dedicatedly proposed to achieve an efficient training procedure. Considering the complex specificities of this problem, except for the noise input of the generator, an identity embedding-guided architecture is proposed to retain informative features for each individual. A parallel spatial and channel fusion attention block is innovatively designed to encourage the model to learn discriminative and informative features by focusing on different regional details and abstract concepts. The attention block is also widely applied to the overall classifier to learn identity-dependent information. A loss combination of the ArcFace and focal loss is utilized to address the small-sample problem. Two parameters are proposed to control the generated samples that are fed into the classifier during the optimization procedure. The proposed DHI-GAN framework is finally validated on a real-world dataset, and the experimental results demonstrate that it outperforms other baselines, achieving a 92.5% top-one accuracy rate. Most importantly, the proposed GAN-based semisupervised training strategy is able to reduce the required number of training samples (individuals) and can also be incorporated into other classification models. Our code will be available at https://github.com/sculyi/MedicalImages/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
t通应助射天狼采纳,获得10
1秒前
无限曼易发布了新的文献求助10
2秒前
2秒前
2秒前
平常的一发布了新的文献求助10
2秒前
Ttt完成签到,获得积分20
2秒前
和科研不太熟完成签到 ,获得积分10
3秒前
粗心的绾绾应助云峻雨采纳,获得10
3秒前
科研通AI2S应助菲菲采纳,获得10
3秒前
4秒前
完美世界应助阿冉采纳,获得50
6秒前
skyla1003完成签到 ,获得积分10
7秒前
7秒前
ding应助xl采纳,获得10
7秒前
大海无量完成签到,获得积分10
8秒前
9秒前
Akim应助王的发采纳,获得10
9秒前
忽而今夏完成签到,获得积分10
9秒前
ding应助科研通管家采纳,获得20
9秒前
今后应助科研通管家采纳,获得10
10秒前
10秒前
李小白应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得50
10秒前
情怀应助科研通管家采纳,获得10
10秒前
11秒前
丘比特应助孤独的芝麻采纳,获得10
11秒前
Jasper应助Frank采纳,获得10
11秒前
大模型应助种一个月亮采纳,获得10
12秒前
13秒前
直率的画笔完成签到,获得积分10
14秒前
俊逸凌雪发布了新的文献求助10
14秒前
FashionBoy应助一王打尽采纳,获得10
15秒前
16秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819229
求助须知:如何正确求助?哪些是违规求助? 3362344
关于积分的说明 10416435
捐赠科研通 3080506
什么是DOI,文献DOI怎么找? 1694531
邀请新用户注册赠送积分活动 814686
科研通“疑难数据库(出版商)”最低求助积分说明 768388