亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Failure-mode–independent prediction model for the peak strength of reinforced concrete columns using Bayesian neural network: A probabilistic approach

结构工程 概率逻辑 人工神经网络 标准差 失效模式及影响分析 模式(计算机接口) 抗剪强度(土壤) 贝叶斯概率 钢筋混凝土 计算机科学 数学 工程类 统计 机器学习 地质学 土壤科学 土壤水分 操作系统
作者
Chao‐Lie Ning,Meng Wang,Xiaohui Yu
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:25 (9): 1923-1942 被引量:6
标识
DOI:10.1177/13694332221081187
摘要

A reasonable prediction for the peak strength of reinforced concrete (RC) columns is paramount for the seismic performance evaluation of RC structures. The available prediction models are commonly dependent on the failure mode, and each of them is only applicable to the columns with a particular one. However, the failure mode of RC columns is difficult to be identified accurately in prior, leading to the inconvenience of predicting its peak strength. To overcome this shortcoming, a probabilistic approach was proposed using Bayesian neural network (BNN) to develop a failure-mode–independent model for predicting the peak strength of RC columns directly. The results indicated that the developed model produces reasonable prediction for the peak strength of RC columns failing in different modes. For the training subset, the mean prediction accuracy of the flexure-dominated, flexure-shear-dominated, and shear-dominated columns is 0.997, 0.997, and 0.998, respectively. For the testing subset, the corresponding mean prediction accuracy is 0.957, 0.952, and 0.943. Compared to existing probabilistic models, the developed model exhibits better performance in reducing the uncertainties in peak strength prediction. Compared to existing deterministic models, the developed model could predict the peak strength of RC columns in terms of the confidence interval. In particular, if the confidence interval of peak strength is defined as the mean plus and minus two times standard deviation, 98.9% and 98.4% of the training subset and testing subset are covered. Therefore, the developed model is beneficial for engineers to address the confusion, namely, which peak prediction is the most probable one, when several deterministic models exist for a specific specimen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal发布了新的文献求助30
45秒前
爆米花应助Crystal采纳,获得10
56秒前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
看不了一点文献应助Nan采纳,获得10
2分钟前
怕黑乌冬面完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
jader发布了新的文献求助30
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
wss123发布了新的文献求助10
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
wss123完成签到,获得积分10
4分钟前
在水一方应助矢思然采纳,获得10
4分钟前
贪玩的万仇完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
矢思然发布了新的文献求助10
5分钟前
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
swordlee发布了新的文献求助100
6分钟前
6分钟前
顾矜应助会飞的蜗牛采纳,获得10
7分钟前
7分钟前
ECD发布了新的文献求助10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
看不了一点文献应助LIXI采纳,获得10
8分钟前
ECD完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
JUST发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5408008
求助须知:如何正确求助?哪些是违规求助? 4525395
关于积分的说明 14101764
捐赠科研通 4439320
什么是DOI,文献DOI怎么找? 2436707
邀请新用户注册赠送积分活动 1428692
关于科研通互助平台的介绍 1406795