纳米棒
材料科学
单层
拉曼散射
基质(水族馆)
薄脆饼
纳米技术
拉曼光谱
图层(电子)
等离子体子
纳米球光刻
光电子学
制作
光学
医学
海洋学
物理
替代医学
病理
地质学
作者
Xinxin Li,Xiang Lin,Guoqiang Fang,Haoyu Dong,Junming Li,Shu‐Lin Cong,Li Wang,Shikuan Yang
标识
DOI:10.1016/j.jcis.2022.04.040
摘要
Broadband surface-enhanced Raman scattering (SERS) substrates can achieve strong SERS enhancement at multiple excitation wavelengths, which is highly desirable in diverse fields. Here, a facile and reliable interfacial layer-by-layer self-assembly technique was proposed to construct broadband and sensitive Au@Ag nanorod (NR) monolayer film over nanosphere (MFON) substrate. The Au@Ag NR MFON substrate with ultra-broad spectrum from visible to near-infrared region was achieved by varying the shape of plasmonic nanoparticles, which exhibits excellent SERS activity at different excitation wavelengths. Besides, the size of Au@Ag NRs and polystyrene spheres, and the layer numbers of Au@Ag NR film were altered to optimize the sensitivity of SERS substrates. Notably, the SERS intensity of the optimally designed Au@Ag NR MFON substrate is 25-fold larger than that of Au@Ag NR monolayer film deposition on the plane Si wafer. Furthermore, the optimal Au@Ag NR MFON substrate presents excellent reproducibility and a much wider quantitative detection range, which enables a wide-linear-range analysis of thiram in grape juice by a portable Raman spectrometer. Therefore, we envision that this study opens a new avenue toward the design of ultra-sensitive and broadband SERS platforms with widespread applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI