Human NOTCH4 Is a Key Target of RUNX1 in Megakaryocytic Differentiation

运行x1 血小板紊乱 生物 造血 诱导多能干细胞 癌症研究 白血病 GATA1公司 斑马鱼 干细胞 细胞生物学 免疫学 遗传学 血小板 基因 胚胎干细胞
作者
Yueying Li,Jin Chen,Hao Bai,Shu Sun,Paul Liu,Linzhao Cheng,Qianfei Wang
出处
期刊:Blood [American Society of Hematology]
卷期号:128 (22): 425-425 被引量:4
标识
DOI:10.1182/blood.v128.22.425.425
摘要

Abstract Megakaryocytes (MK), which produce platelets, play important roles in blood coagulation and hemostasis. The master transcription factor RUNX1 regulates lineage-specific transcriptional targets and key signaling pathways, and is known to be essential for megakaryopoiesis. Mono-allelic RUNX1 mutations lead to familial platelet disorder (FPD), which is characterized by thrombocytopenia and abnormal platelet functions. A high percentage (~50%) of these FPD patients later develop myelodysplastic syndromes and acute myeloid leukemia. The exact mechanisms underlying deregulated megakaryopoiesis in FPD remain unclear, partially due to the lack of an adequate experimental model mimicking the human disease. For example, engineered laboratory mice and zebrafish with only one copy of the Runx1 gene do not develop bleeding disorders or leukemia. Using an in vitro hematopoietic differentiation system, we found that megakaryocytic differentiation from FPD-derived induced pluripotent stem cells (iPSCs) were defective (Connelly et al., 2014). Targeted correction of the mutated RUNX1 allele by genome editing restored the MK production and functions, validating the central role of RUNX1 in megakaryopoiesis (Connelly et al., 2014). In this new study, we pursued the hypothesis that direct target genes regulated by RUNX1 play important roles in human megakaryopoiesis. We first performed RNA-Seq analysis on differentiated hematopoietic cells from FPD-iPSCs (harboring a mono-allelic RUNX1 mutation) and RUNX1-corrected isogenic iPSCs. Seventy-nine genes were expressed at a significantly higher level (p<0.01, FDR<0.05) while 93 genes were expressed at a significantly lower level (p<0.01, FDR<0.05) in the RUNX1-corrected cells as compared to the FPD-iPSCs. To determine whether these differentially expressed genes (DEGs) are the direct targets of RUNX1, we additionally performed genome-wide location analysis of RUNX1 by ChIP-Seq using the same hematopoietic cell population differentiated from the RUNX1-corrected isogenic iPSCs. We detected 5266 (FDR<0.05) binding sites in 4526 gene loci. Combined with the DEG data from RNA-Seq analyses, we further identified 37 up-regulated genes (such as ITGB3 and PF4) and 27 down-regulated genes with RUNX1 binding to the gene's proximity. Among the 64 differentially expressed genes with RUNX1 binding, Gene Ontology (GO) analysis revealed that only 13 genes including PF4 have been reported to be relevant to megakaryopoiesis. In order to verify the roles of these RUNX1 target genes in hematopoiesis and megakaryopoiesis, we carried out gene knockout (KO) experiments by CRISPR-Cas9 in normal human iPSCs followed by in vitro hematopoietic differentiation assays. We first focused on the "down-regulated" genes by RUNX1 binding, with the hypothesis that their KO may enhance hematopoiesis and/or megakaryopoiesis from normal iPSCs. One of such genes is NOTCH4, a member of NOTCH receptor family that plays important roles in development and cell fate determination. A previous study showed that NOTCH signaling specifies MK development from mouse hematopoietic progenitor cells (Mercher et al., 2008), while we have not seen publications on the NOTCH4 in human MK development. Using the improved CRISPR technology, we successfully achieved KO of one copy of NOTCH4 in the wildtype iPSCs. We found that heterozygous KO of NOTCH4 increased MK (progenitor) production by 95% (p<0.05), while the production of CD34+ multipotent hematopoietic progenitor cells were not affected. To further verify its function, we inhibited NOTCH4 signaling with a gamma-secretase inhibitor. Notably, inhibition of NOTCH4 signal starting at day 2 of hematopoietic differentiation improved the efficiency of MK progenitor production by 50% (p<0.05) and more mature MK production by 70% (p<0.05). Taken together, we conclude that NOTCH4, a newly discovered RUNX1 target gene, negatively regulates megakaryopoiesis in a developmental-stage specific manner. Unlocking this inhibitory effect by small molecule inhibitors can promote MK production ex vivo. The described approach will enable us to discover additional novel genes that influence human hematopoiesis and megakaryopoiesis, which in turn will help to promote ex vivo generation of MKs from human iPSCs or postnatal hematopoietic stem/progenitor cells. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金角大王完成签到,获得积分10
2秒前
小蘑菇应助hebilie采纳,获得10
2秒前
打打应助任性冰凡采纳,获得10
2秒前
向阳向光完成签到,获得积分10
2秒前
香蕉秋蝶完成签到 ,获得积分10
3秒前
常常完成签到,获得积分0
3秒前
香蕉觅云应助xxxxx采纳,获得10
3秒前
leooooo发布了新的文献求助10
3秒前
小熊和明珠完成签到,获得积分10
3秒前
3秒前
ktssly发布了新的文献求助10
4秒前
麻辣梗儿完成签到 ,获得积分10
4秒前
5秒前
含糊的外绣完成签到,获得积分20
5秒前
李芳发布了新的文献求助10
5秒前
张雪瑞发布了新的文献求助10
6秒前
金角大王发布了新的文献求助10
6秒前
7秒前
7秒前
舒适的涑完成签到,获得积分10
8秒前
年轻迪奥完成签到,获得积分10
8秒前
健壮柚子发布了新的文献求助10
8秒前
9秒前
杨破玉完成签到,获得积分10
9秒前
9秒前
带给发布了新的文献求助10
9秒前
10秒前
追梦完成签到,获得积分10
11秒前
axt完成签到,获得积分10
11秒前
11秒前
11秒前
怡然尔芙完成签到,获得积分10
11秒前
不要说话1发布了新的文献求助10
11秒前
圆润润呐完成签到,获得积分10
12秒前
yyx完成签到,获得积分10
12秒前
12秒前
万宝路发布了新的文献求助10
12秒前
13秒前
大棒槌发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317139
求助须知:如何正确求助?哪些是违规求助? 4459587
关于积分的说明 13875850
捐赠科研通 4349563
什么是DOI,文献DOI怎么找? 2388945
邀请新用户注册赠送积分活动 1383134
关于科研通互助平台的介绍 1352384