PLGA公司
生物医学工程
化学
微球
骨愈合
骨形成
磷酸钙骨水泥
材料科学
牙科
外科
钙
化学工程
医学
体外
工程类
生物化学
有机化学
内分泌学
作者
Hongbing Liao,Rosa P. Félix Lanao,Jeroen J.J.P. van den Beucken,Nuo Zhou,Sanne K. Both,Joop G.C. Wolke,John A. Jansen
摘要
The aim of this study was to evaluate the effect of PLGA microsphere dimensions on bone formation after injection of calcium phosphate cement (CPC)/PLGA in a guinea pig tibial intramedullarly model. To this end, injectable CPC/PLGA formulations were prepared using PLGA microspheres with either a small (~25 µm) or large (~100 µm) diameter, which were incorporated at a 20:80 ratio (wt%) within apatite CPC. Both CPC/PLGA formulations were injected into a marrow-ablated tibial intramedullary cavity and, after an implantation period of 12 weeks, histology and histomorphometry were used to address bone formation. The results demonstrated bone ingrowth throughout the entire scaffold material for both CPC/PLGA formulations upon PLGA microsphere degradation. More importantly, bone formation within the CPC matrix was > two-fold higher for CPC-PLGA with 25 µm PLGA microspheres. Additionally, the pattern of bone and marrow formation showed distinct differences related to PLGA microsphere dimension. In general, this study demonstrates that PLGA microsphere dimensions of ~25 µm, leading to pores of ~25 µm within CPC, are sufficient for bone ingrowth and allow substantial bone formation. Further, the results demonstrate that PLGA microsphere dimensions provide a tool to control bone formation for injectable CPC/PLGA bone substitutes. Copyright © 2013 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI