Development of a Diamond Microfluidics-Based Intra-Chip Cooling Technology for GaN

结温 材料科学 散热片 钻石 高电子迁移率晶体管 光电子学 热阻 单片微波集成电路 微流控 热撒布器 集成电路 晶体管 传热 热的 机械工程 电气工程 纳米技术 放大器 复合材料 CMOS芯片 工程类 电压 物理 气象学 热力学
作者
David Altman,Anurag Gupta,Matthew Tyhach
标识
DOI:10.1115/ipack2015-48179
摘要

GaN on Diamond has been demonstrated to enable notable increases in RF power density without impacting High Electron Mobility Transistor (HEMT) peak junction temperature. However, Monolithic Microwave Integrated Circuits (MMICs) fabricated using GaN on Diamond substrates are subject to the same packaging thermal limitations as their GaN on SiC counterparts. Therefore, efforts to exploit GaN on Diamond to achieve substantial increases in MMIC power are stymied by external packaging thermal resistances that characterize the current “remote cooling” paradigm. This paper explores an intra-chip cooling alternative to the “remote cooling” paradigm, eliminating various heat spreader, heat sink and thermal interface layers in favor of integral microfluidic cooling in close proximity to the device junction. We describe an intra-chip cooling structure comprised of GaN on Diamond with integral micro-channels fed using a Si fluid distribution manifold. This structure exploits GaN on Diamond substrate technology to support increased HEMT areal power density while employing diamond microfluidics to affect scalable, low thermal resistance die-level heat removal. Thermal-electrical-mechanical co-design of integrated circuit (IC) features is performed to optimize conjugate heat transfer performance and manage the electrical and mechanical impacts associated with the presence of fluidic cooling near the electrically active region of the device. Through this, MMICs with significantly greater RF output than typical of the current state-of-the-art (SoA), dissipating die and HEMT heat fluxes in excess of 1 kW/cm2 and 30 kW/cm2, respectively, can be operated with junction temperatures that support reliable operation. The modeling, simulation and micro-fabrication results presented here demonstrate the potential of diamond microfluidics-based intra-chip cooling as a means to alleviate thermal impediments to exploitation of the full electromagnetic potential of GaN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追野发布了新的文献求助10
2秒前
殷一丹完成签到 ,获得积分10
2秒前
3秒前
乐观无心完成签到,获得积分10
4秒前
carl发布了新的文献求助30
5秒前
大模型应助温暖的夏波采纳,获得10
8秒前
小蘑菇应助97采纳,获得10
9秒前
9秒前
合法的天空完成签到,获得积分10
10秒前
www完成签到,获得积分20
10秒前
10秒前
JamesPei应助鄢亮采纳,获得10
12秒前
英俊的铭应助好好学习采纳,获得10
13秒前
蜘蛛侠完成签到 ,获得积分10
13秒前
13秒前
KY完成签到 ,获得积分10
14秒前
帝皇发布了新的文献求助30
14秒前
15秒前
aurora发布了新的文献求助10
16秒前
无花果应助cch采纳,获得10
17秒前
18秒前
迟迟完成签到 ,获得积分10
19秒前
细心尔蓝发布了新的文献求助10
19秒前
鱼粥很好发布了新的文献求助10
20秒前
紫木悠兮发布了新的文献求助10
21秒前
21秒前
丰富的诗槐关注了科研通微信公众号
22秒前
23秒前
科研通AI6应助幸福猎人1991采纳,获得10
24秒前
zxy发布了新的文献求助10
24秒前
26秒前
26秒前
26秒前
鄢亮发布了新的文献求助10
27秒前
chenqi应助科研小白采纳,获得10
27秒前
28秒前
cytomito完成签到,获得积分10
29秒前
东东q东东发布了新的文献求助100
29秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520208
求助须知:如何正确求助?哪些是违规求助? 4612035
关于积分的说明 14531673
捐赠科研通 4549645
什么是DOI,文献DOI怎么找? 2493050
邀请新用户注册赠送积分活动 1474230
关于科研通互助平台的介绍 1445925