已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery

医学 肺癌 比例危险模型 接收机工作特性 核医学 阶段(地层学) 放射科 危险系数 内科学 肿瘤科 正电子发射断层摄影术 置信区间 生物 古生物学
作者
Margarita Kirienko,Luca Cozzi,Lidija Antunovic,Lisa Lozza,Antonella Fogliata,Emanuele Voulaz,Alexia Rossi,Arturo Chiti,Martina Sollini
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:45 (2): 207-217 被引量:166
标识
DOI:10.1007/s00259-017-3837-7
摘要

Radiomic features derived from the texture analysis of different imaging modalities e show promise in lesion characterisation, response prediction, and prognostication in lung cancer patients. The present study aimed to identify an images-based radiomic signature capable of predicting disease-free survival (DFS) in non-small cell lung cancer (NSCLC) patients undergoing surgery. A cohort of 295 patients was selected. Clinical parameters (age, sex, histological type, tumour grade, and stage) were recorded for all patients. The endpoint of this study was DFS. Both computed tomography (CT) and fluorodeoxyglucose positron emission tomography (PET) images generated from the PET/CT scanner were analysed. Textural features were calculated using the LifeX package. Statistical analysis was performed using the R platform. The datasets were separated into two cohorts by random selection to perform training and validation of the statistical models. Predictors were fed into a multivariate Cox proportional hazard regression model and the receiver operating characteristic (ROC) curve as well as the corresponding area under the curve (AUC) were computed for each model built. The Cox models that included radiomic features for the CT, the PET, and the PET+CT images resulted in an AUC of 0.75 (95%CI: 0.65–0.85), 0.68 (95%CI: 0.57–0.80), and 0.68 (95%CI: 0.58–0.74), respectively. The addition of clinical predictors to the Cox models resulted in an AUC of 0.61 (95%CI: 0.51–0.69), 0.64 (95%CI: 0.53–0.75), and 0.65 (95%CI: 0.50–0.72) for the CT, the PET, and the PET+CT images, respectively. A radiomic signature, for either CT, PET, or PET/CT images, has been identified and validated for the prediction of disease-free survival in patients with non-small cell lung cancer treated by surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助晓晓来了采纳,获得10
刚刚
1秒前
fys131415完成签到 ,获得积分10
4秒前
欣喜的诗筠完成签到 ,获得积分10
5秒前
5秒前
大羊完成签到 ,获得积分10
7秒前
张秉环完成签到 ,获得积分10
7秒前
7秒前
顾矜应助wise111采纳,获得10
9秒前
9秒前
CipherSage应助Chillym采纳,获得10
11秒前
GingerF应助小小研究生采纳,获得50
11秒前
12秒前
冉冉升起应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
12秒前
水草帽完成签到 ,获得积分10
16秒前
yxh发布了新的文献求助10
17秒前
莫问题完成签到,获得积分20
18秒前
19秒前
积极凌兰完成签到 ,获得积分10
19秒前
Henvy完成签到,获得积分10
19秒前
21秒前
21秒前
皮凡发布了新的文献求助10
25秒前
26秒前
机灵纸鹤完成签到 ,获得积分10
26秒前
arno2233发布了新的文献求助10
28秒前
莫欣宇完成签到 ,获得积分10
29秒前
hhh完成签到 ,获得积分10
29秒前
GingerF举报sun求助涉嫌违规
30秒前
gkads举报zhangxia求助涉嫌违规
30秒前
32秒前
32秒前
32秒前
牙膏616完成签到,获得积分10
32秒前
耶格尔完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655