Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery

医学 肺癌 比例危险模型 接收机工作特性 核医学 阶段(地层学) 放射科 危险系数 内科学 肿瘤科 正电子发射断层摄影术 置信区间 生物 古生物学
作者
Margarita Kirienko,Luca Cozzi,Lidija Antunovic,Lisa Lozza,Antonella Fogliata,Emanuele Voulaz,Alexia Rossi,Arturo Chiti,Martina Sollini
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:45 (2): 207-217 被引量:166
标识
DOI:10.1007/s00259-017-3837-7
摘要

Radiomic features derived from the texture analysis of different imaging modalities e show promise in lesion characterisation, response prediction, and prognostication in lung cancer patients. The present study aimed to identify an images-based radiomic signature capable of predicting disease-free survival (DFS) in non-small cell lung cancer (NSCLC) patients undergoing surgery. A cohort of 295 patients was selected. Clinical parameters (age, sex, histological type, tumour grade, and stage) were recorded for all patients. The endpoint of this study was DFS. Both computed tomography (CT) and fluorodeoxyglucose positron emission tomography (PET) images generated from the PET/CT scanner were analysed. Textural features were calculated using the LifeX package. Statistical analysis was performed using the R platform. The datasets were separated into two cohorts by random selection to perform training and validation of the statistical models. Predictors were fed into a multivariate Cox proportional hazard regression model and the receiver operating characteristic (ROC) curve as well as the corresponding area under the curve (AUC) were computed for each model built. The Cox models that included radiomic features for the CT, the PET, and the PET+CT images resulted in an AUC of 0.75 (95%CI: 0.65–0.85), 0.68 (95%CI: 0.57–0.80), and 0.68 (95%CI: 0.58–0.74), respectively. The addition of clinical predictors to the Cox models resulted in an AUC of 0.61 (95%CI: 0.51–0.69), 0.64 (95%CI: 0.53–0.75), and 0.65 (95%CI: 0.50–0.72) for the CT, the PET, and the PET+CT images, respectively. A radiomic signature, for either CT, PET, or PET/CT images, has been identified and validated for the prediction of disease-free survival in patients with non-small cell lung cancer treated by surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助琪琪的采纳,获得10
刚刚
鲤鱼白玉完成签到,获得积分10
1秒前
1秒前
lbw完成签到,获得积分10
1秒前
慕青应助Silence采纳,获得10
1秒前
xueshudog完成签到,获得积分10
1秒前
个性的篮球完成签到,获得积分10
2秒前
kkzbl驳回了bkagyin应助
2秒前
852应助lv采纳,获得50
2秒前
LiangHu完成签到,获得积分10
2秒前
2秒前
狂野的冰棍完成签到,获得积分10
3秒前
烟火发布了新的文献求助10
3秒前
3秒前
季生完成签到,获得积分10
3秒前
啛啛喳喳完成签到,获得积分10
3秒前
pan发布了新的文献求助10
3秒前
雨淋沐风发布了新的文献求助10
4秒前
taoli发布了新的文献求助10
4秒前
望着夏草想念你完成签到,获得积分10
4秒前
serendipity完成签到,获得积分10
4秒前
敏敏完成签到 ,获得积分10
4秒前
puhu完成签到,获得积分10
5秒前
传奇3应助花成花采纳,获得10
5秒前
5秒前
怡然凌柏完成签到 ,获得积分10
5秒前
5秒前
儒雅沛凝发布了新的文献求助10
6秒前
唯心如意完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
BEIBEI完成签到,获得积分10
7秒前
7秒前
小二郎应助CYJ采纳,获得10
7秒前
huang发布了新的文献求助10
8秒前
gentleman完成签到,获得积分10
8秒前
沉静的安南完成签到,获得积分20
8秒前
8秒前
zhangxin完成签到,获得积分10
8秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940