安普克
登革热病毒
血管内皮生长因子受体
登革热
化学
病毒学
癌症研究
医学
蛋白激酶A
磷酸化
生物化学
作者
Yihong Wan,Wenyu Wu,Yuanda Wan,Li Li,Jiawen Zhang,Xiao‐Guang Chen,Shuwen Liu,Xingang Yao
标识
DOI:10.1016/j.phrs.2021.105721
摘要
Abstract Dengue virus (DENV) is the most prevalent arthropod-borne viral disease of humans and has a major impact on global public health. There is no clinically approved drugs for DENV infection. Since intracellular VEGFR2 is increased in DENV infected patients, we thus hypothesized that VEGFR2 participated DENV proliferation and its inhibitors could be served as antivirals against DENV. Actually our results showed that VEGFR2 was induced by DENV infection. Also the agonist of VEGFR2, VEGF-A, promoted DENV proliferation. Therefore, we screened the inhibitors of VEGFR2 and found that brivanib alaninate (brivanib) showed the best anti-DENV ability with the lowest cellular cytotoxicity. Mechanically, our results indicated VEGFR2 directly interacted with PTP1B to dephosphorylate AMPK to provide lipid environment for viral replication. However, this effect could be inhibited by brivanib, which significantly reversed the reduction of AMPK phosphorylation caused by DENV infection, thus improving the cellular lipid environment. Moreover, the antiviral effect of brivanib could be reversed by AMPK inhibitor, Compound C. In addition, oral administration of brivianib (20–50 mg/kg/day) clearly improved the survival rate of DENV2 infection, and this effect was abolished in accompanied with Compound C (10mg/kg/day). Collectively, our study disclosed the mechanism of VEGFR2 in DENV2 and evaluated the antiviral ability of brivanib, which deserved more attention for clinical usage in DENV infection.
科研通智能强力驱动
Strongly Powered by AbleSci AI