AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom

抗菌肽 基因组 计算生物学 生物信息学 抗菌剂 功能(生物学) 功能基因组学 基因组学 计算机科学 人工智能 生物 生物信息学 机器学习 遗传学 基因 微生物学
作者
Ritesh Kumar Sharma,Sameer Shrivastava,Sanjay Kumar Singh,Abhinav Kumar,Sonal Saxena,Raj Kumar Singh
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:28
标识
DOI:10.1093/bib/bbab242
摘要

With advancements in genomics, there has been substantial reduction in the cost and time of genome sequencing and has resulted in lot of data in genome databases. Antimicrobial host defense proteins provide protection against invading microbes. But confirming the antimicrobial function of host proteins by wet-lab experiments is expensive and time consuming. Therefore, there is a need to develop an in silico tool to identify the antimicrobial function of proteins. In the current study, we developed a model AniAMPpred by considering all the available antimicrobial peptides (AMPs) of length $\in $[10 200] from the animal kingdom. The model utilizes a support vector machine algorithm with deep learning-based features and identifies probable antimicrobial proteins (PAPs) in the genome of animals. The results show that our proposed model outperforms other state-of-the-art classifiers, has very high confidence in its predictions, is not biased and can classify both AMPs and non-AMPs for a diverse peptide length with high accuracy. By utilizing AniAMPpred, we identified 436 PAPs in the genome of Helobdella robusta. To further confirm the functional activity of PAPs, we performed BLAST analysis against known AMPs. On detailed analysis of five selected PAPs, we could observe their similarity with antimicrobial proteins of several animal species. Thus, our proposed model can help the researchers identify PAPs in the genome of animals and provide insight into the functional identity of different proteins. An online prediction server is also developed based on the proposed approach, which is freely accessible at https://aniamppred.anvil.app/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
志在长空发布了新的文献求助10
刚刚
乐乐应助Priscilla采纳,获得10
刚刚
ding应助ohh采纳,获得10
1秒前
1秒前
1秒前
105完成签到,获得积分10
2秒前
3秒前
天天快乐应助vvA11采纳,获得10
3秒前
JoySue发布了新的文献求助10
4秒前
xdedd完成签到,获得积分10
4秒前
4秒前
4秒前
再沉默完成签到,获得积分10
5秒前
6秒前
温柔的鱼完成签到,获得积分10
6秒前
ziyuexu发布了新的文献求助10
7秒前
科研通AI5应助jz采纳,获得10
8秒前
8秒前
LexMz发布了新的文献求助10
8秒前
9秒前
再沉默发布了新的文献求助10
9秒前
滕骞完成签到,获得积分20
9秒前
帅气老虎发布了新的文献求助10
9秒前
9秒前
12秒前
tramp应助冷酷的风华采纳,获得20
12秒前
桐桐应助过过采纳,获得10
12秒前
Lucas应助ziyuexu采纳,获得10
12秒前
情怀应助牛牛牛采纳,获得10
14秒前
天衣无缝发布了新的文献求助10
14秒前
小饭团子发布了新的文献求助30
14秒前
15秒前
yc发布了新的文献求助10
15秒前
刘七七努力搞科研完成签到 ,获得积分10
16秒前
18秒前
18秒前
oneday完成签到,获得积分10
18秒前
18秒前
xxxxxx发布了新的文献求助10
19秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787493
求助须知:如何正确求助?哪些是违规求助? 3333123
关于积分的说明 10259242
捐赠科研通 3048542
什么是DOI,文献DOI怎么找? 1673135
邀请新用户注册赠送积分活动 801699
科研通“疑难数据库(出版商)”最低求助积分说明 760324