Searching for structural predictors of plasticity in dense active packings

工作(物理) 边界(拓扑) 统计物理学 可塑性 活性物质 机械 计算机科学 生物系统 经典力学 物理 数学 热力学 数学分析 生物 细胞生物学
作者
Julia A. Giannini,Ethan Stanifer,M. Lisa Manning
出处
期刊:Soft Matter [Royal Society of Chemistry]
卷期号:18 (7): 1540-1553
标识
DOI:10.1039/d1sm01675j
摘要

In amorphous solids subject to shear or thermal excitation, so-called structural indicators have been developed that predict locations of future plasticity or particle rearrangements. An open question is whether similar tools can be used in dense active materials, but a challenge is that under most circumstances, active systems do not possess well-defined solid reference configurations. We develop a computational model for a dense active crowd attracted to a point of interest, which does permit a mechanically stable reference state in the limit of infinitely persistent motion. Previous work on a similar system suggested that the collective motion of crowds could be predicted by inverting a matrix of time-averaged two-particle correlation functions. Seeking a first-principles understanding of this result, we demonstrate that this active matter system maps directly onto a granular packing in the presence of an external potential, and extend an existing structural indicator based on linear response to predict plasticity in the presence of noisy dynamics. We find that the strong pressure gradient necessitated by the directed activity, as well as a self-generated free boundary, strongly impact the linear response of the system. In low-pressure regions the linear-response-based indicator is predictive, but it does not work well in the high-pressure interior of our active packings. Our findings motivate and inform future work that could better formulate structure-dynamics predictions in systems with strong pressure gradients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助归诚采纳,获得10
4秒前
4秒前
4秒前
独言发布了新的文献求助10
4秒前
nini完成签到,获得积分10
5秒前
zoie0809完成签到,获得积分10
5秒前
坚定的怀蕾关注了科研通微信公众号
7秒前
852应助dlfshr采纳,获得30
8秒前
llllllllll发布了新的文献求助10
9秒前
xiaoxiaozhu发布了新的文献求助10
10秒前
11秒前
Holland完成签到,获得积分10
12秒前
小雅完成签到,获得积分10
13秒前
冷酷的松思完成签到,获得积分10
16秒前
归诚发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
雪凝清霜应助xiaoxiaozhu采纳,获得10
18秒前
18秒前
19秒前
alin完成签到 ,获得积分10
20秒前
21秒前
小吴完成签到 ,获得积分10
22秒前
罗亚亚完成签到,获得积分10
22秒前
23秒前
五公里小战士完成签到,获得积分10
24秒前
25秒前
小马甲应助机灵夜云采纳,获得10
25秒前
25秒前
野花发布了新的文献求助10
25秒前
研友_Ze0vBn发布了新的文献求助10
25秒前
mu发布了新的文献求助10
26秒前
26秒前
可千万不要躺平呀应助Cc采纳,获得20
29秒前
ccy完成签到,获得积分10
31秒前
31秒前
qing应助元谷雪采纳,获得10
31秒前
阿虎发布了新的文献求助10
31秒前
梁霄完成签到,获得积分10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831652
求助须知:如何正确求助?哪些是违规求助? 3373818
关于积分的说明 10481683
捐赠科研通 3093752
什么是DOI,文献DOI怎么找? 1703024
邀请新用户注册赠送积分活动 819267
科研通“疑难数据库(出版商)”最低求助积分说明 771340